Cargando…
Variable selection for causal mediation analysis using LASSO-based methods
Causal mediation effect estimates can be obtained from marginal structural models using inverse probability weighting with appropriate weights. In order to compute weights, treatment and mediator propensity score models need to be fitted first. If the covariates are high-dimensional, parsimonious pr...
Autores principales: | Ye, Zhaoxin, Zhu, Yeying, Coffman, Donna L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189011/ https://www.ncbi.nlm.nih.gov/pubmed/33755518 http://dx.doi.org/10.1177/0962280221997505 |
Ejemplares similares
-
Discovering graphical Granger causality using the truncating lasso penalty
por: Shojaie, Ali, et al.
Publicado: (2010) -
Comparing Bayesian Variable Selection to Lasso Approaches for Applications in Psychology
por: Bainter, Sierra A., et al.
Publicado: (2023) -
Robust Adaptive Lasso method for parameter’s estimation and variable selection in high-dimensional sparse models
por: Wahid, Abdul, et al.
Publicado: (2017) -
An efficient gene selection method for microarray data based on LASSO and BPSO
por: Xiong, Ying, et al.
Publicado: (2019) -
Stability selection for LASSO with weights based on AUC
por: Kwon, Yonghan, et al.
Publicado: (2023)