Cargando…
A new model for learning-based forecasting procedure by combining k-means clustering and time series forecasting algorithms
This paper aims to propose a new model for time series forecasting that combines forecasting with clustering algorithm. It introduces a new scheme to improve the forecasting results by grouping the time series data using k-means clustering algorithm. It utilizes the clustering result to get the fore...
Autores principales: | Hartomo, Kristoko Dwi, Nataliani, Yessica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189023/ https://www.ncbi.nlm.nih.gov/pubmed/34150996 http://dx.doi.org/10.7717/peerj-cs.534 |
Ejemplares similares
-
Forecasting Bitcoin closing price series using linear regression and neural networks models
por: Uras, Nicola, et al.
Publicado: (2020) -
A hybrid forecasting model using LSTM and Prophet for energy consumption with decomposition of time series data
por: Arslan, Serdar
Publicado: (2022) -
Empirical mode decomposition using deep learning model for financial market forecasting
por: Jin, Zebin, et al.
Publicado: (2022) -
A unified approach for cluster-wise and general noise rejection approaches for k-means clustering
por: Ubukata, Seiki
Publicado: (2019) -
Multi-horizon short-term load forecasting using hybrid of LSTM and modified split convolution
por: Ullah, Irshad, et al.
Publicado: (2023)