Cargando…
GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme
How are E3 ubiquitin ligases configured to match substrate quaternary structures? Here, by studying the yeast GID complex (mutation of which causes deficiency in glucose-induced degradation of gluconeogenic enzymes), we discover supramolecular chelate assembly as an E3 ligase strategy for targeting...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189437/ https://www.ncbi.nlm.nih.gov/pubmed/33905682 http://dx.doi.org/10.1016/j.molcel.2021.03.025 |
_version_ | 1783705494216507392 |
---|---|
author | Sherpa, Dawafuti Chrustowicz, Jakub Qiao, Shuai Langlois, Christine R. Hehl, Laura A. Gottemukkala, Karthik Varma Hansen, Fynn M. Karayel, Ozge von Gronau, Susanne Prabu, J. Rajan Mann, Matthias Alpi, Arno F. Schulman, Brenda A. |
author_facet | Sherpa, Dawafuti Chrustowicz, Jakub Qiao, Shuai Langlois, Christine R. Hehl, Laura A. Gottemukkala, Karthik Varma Hansen, Fynn M. Karayel, Ozge von Gronau, Susanne Prabu, J. Rajan Mann, Matthias Alpi, Arno F. Schulman, Brenda A. |
author_sort | Sherpa, Dawafuti |
collection | PubMed |
description | How are E3 ubiquitin ligases configured to match substrate quaternary structures? Here, by studying the yeast GID complex (mutation of which causes deficiency in glucose-induced degradation of gluconeogenic enzymes), we discover supramolecular chelate assembly as an E3 ligase strategy for targeting an oligomeric substrate. Cryoelectron microscopy (cryo-EM) structures show that, to bind the tetrameric substrate fructose-1,6-bisphosphatase (Fbp1), two minimally functional GID E3s assemble into the 20-protein Chelator-GID(SR4), which resembles an organometallic supramolecular chelate. The Chelator-GID(SR4) assembly avidly binds multiple Fbp1 degrons so that multiple Fbp1 protomers are simultaneously ubiquitylated at lysines near the allosteric and substrate binding sites. Importantly, key structural and biochemical features, including capacity for supramolecular assembly, are preserved in the human ortholog, the CTLH E3. Based on our integrative structural, biochemical, and cell biological data, we propose that higher-order E3 ligase assembly generally enables multipronged targeting, capable of simultaneously incapacitating multiple protomers and functionalities of oligomeric substrates. |
format | Online Article Text |
id | pubmed-8189437 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-81894372021-06-17 GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme Sherpa, Dawafuti Chrustowicz, Jakub Qiao, Shuai Langlois, Christine R. Hehl, Laura A. Gottemukkala, Karthik Varma Hansen, Fynn M. Karayel, Ozge von Gronau, Susanne Prabu, J. Rajan Mann, Matthias Alpi, Arno F. Schulman, Brenda A. Mol Cell Article How are E3 ubiquitin ligases configured to match substrate quaternary structures? Here, by studying the yeast GID complex (mutation of which causes deficiency in glucose-induced degradation of gluconeogenic enzymes), we discover supramolecular chelate assembly as an E3 ligase strategy for targeting an oligomeric substrate. Cryoelectron microscopy (cryo-EM) structures show that, to bind the tetrameric substrate fructose-1,6-bisphosphatase (Fbp1), two minimally functional GID E3s assemble into the 20-protein Chelator-GID(SR4), which resembles an organometallic supramolecular chelate. The Chelator-GID(SR4) assembly avidly binds multiple Fbp1 degrons so that multiple Fbp1 protomers are simultaneously ubiquitylated at lysines near the allosteric and substrate binding sites. Importantly, key structural and biochemical features, including capacity for supramolecular assembly, are preserved in the human ortholog, the CTLH E3. Based on our integrative structural, biochemical, and cell biological data, we propose that higher-order E3 ligase assembly generally enables multipronged targeting, capable of simultaneously incapacitating multiple protomers and functionalities of oligomeric substrates. Cell Press 2021-06-03 /pmc/articles/PMC8189437/ /pubmed/33905682 http://dx.doi.org/10.1016/j.molcel.2021.03.025 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Sherpa, Dawafuti Chrustowicz, Jakub Qiao, Shuai Langlois, Christine R. Hehl, Laura A. Gottemukkala, Karthik Varma Hansen, Fynn M. Karayel, Ozge von Gronau, Susanne Prabu, J. Rajan Mann, Matthias Alpi, Arno F. Schulman, Brenda A. GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme |
title | GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme |
title_full | GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme |
title_fullStr | GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme |
title_full_unstemmed | GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme |
title_short | GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme |
title_sort | gid e3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189437/ https://www.ncbi.nlm.nih.gov/pubmed/33905682 http://dx.doi.org/10.1016/j.molcel.2021.03.025 |
work_keys_str_mv | AT sherpadawafuti gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme AT chrustowiczjakub gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme AT qiaoshuai gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme AT langloischristiner gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme AT hehllauraa gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme AT gottemukkalakarthikvarma gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme AT hansenfynnm gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme AT karayelozge gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme AT vongronaususanne gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme AT prabujrajan gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme AT mannmatthias gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme AT alpiarnof gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme AT schulmanbrendaa gide3ligasesupramolecularchelateassemblyconfiguresmultiprongedubiquitintargetingofanoligomericmetabolicenzyme |