Cargando…
SCOAT-Net: A novel network for segmenting COVID-19 lung opacification from CT images
Automatic segmentation of lung opacification from computed tomography (CT) images shows excellent potential for quickly and accurately quantifying the infection of Coronavirus disease 2019 (COVID-19) and judging the disease development and treatment response. However, some challenges still exist, in...
Autores principales: | Zhao, Shixuan, Li, Zhidan, Chen, Yang, Zhao, Wei, Xie, Xingzhi, Liu, Jun, Zhao, Di, Li, Yongjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189738/ https://www.ncbi.nlm.nih.gov/pubmed/34127870 http://dx.doi.org/10.1016/j.patcog.2021.108109 |
Ejemplares similares
-
A deep-learning-based framework for severity assessment of COVID-19 with CT images
por: Li, Zhidan, et al.
Publicado: (2021) -
Dynamic 3D radiomics analysis using artificial intelligence to assess the stage of COVID-19 on CT images
por: Cai, Shengping, et al.
Publicado: (2022) -
Accurate segmentation for different types of lung nodules on CT images using improved U-Net convolutional network
por: Zhang, Xiaofang, et al.
Publicado: (2021) -
Fish-net posterior capsular opacification: A newer variant
por: Agarwalla, Isha, et al.
Publicado: (2020) -
PDRF-Net: a progressive dense residual fusion network for COVID-19 lung CT image segmentation
por: Lu, Xiaoyan, et al.
Publicado: (2023)