Cargando…
Optimization and fine-tuning of DenseNet model for classification of COVID-19 cases in medical imaging
It’s been more than a year that the entire world is fighting against COVID-19 pandemic. Starting from the Wuhan city in China, COVID-19 has conquered the entire world with its rapid progression. But seeking the importance towards the human situation, it has become essential to build such an automate...
Autores principales: | Chauhan, Tavishee, Palivela, Hemant, Tiwari, Sarveshmani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189817/ http://dx.doi.org/10.1016/j.jjimei.2021.100020 |
Ejemplares similares
-
Classification of Covid-19 patients using efficient fine-tuned deep learning DenseNet model
por: Bohmrah, Maneet Kaur, et al.
Publicado: (2021) -
DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy
por: Alshammari, Abdulaziz
Publicado: (2023) -
Reverse active learning based atrous DenseNet for pathological image classification
por: Li, Yuexiang, et al.
Publicado: (2019) -
Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning
por: Wakili, Musa Adamu, et al.
Publicado: (2022) -
Classification of asymmetry in mammography via the DenseNet convolutional neural network
por: Liao, Tingting, et al.
Publicado: (2023)