Cargando…
Mathematical modeling of COVID-19 in India and its states with optimal control
A pandemic is an epidemic spread over a huge geographical area. COVID-19 is [Formula: see text] such pandemic documented after 1918 flu pandemic. In this work, we frame a mathematical epidemic model taking inspiration from the classic SIR model and develop a compartmental model with ten compartments...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189841/ https://www.ncbi.nlm.nih.gov/pubmed/34127946 http://dx.doi.org/10.1007/s40808-021-01202-8 |
_version_ | 1783705567138676736 |
---|---|
author | Bandekar, Shraddha Ramdas Ghosh, Mini |
author_facet | Bandekar, Shraddha Ramdas Ghosh, Mini |
author_sort | Bandekar, Shraddha Ramdas |
collection | PubMed |
description | A pandemic is an epidemic spread over a huge geographical area. COVID-19 is [Formula: see text] such pandemic documented after 1918 flu pandemic. In this work, we frame a mathematical epidemic model taking inspiration from the classic SIR model and develop a compartmental model with ten compartments to study the coronavirus dynamics in India and three of its most affected states, namely, Maharashtra, Karnataka, and Tamil Nadu, with inclusion of factors related to face mask efficacy, contact tracing, and testing along with quarantine and isolation. We fit the developed model and estimate optimum values of disease transmission rate, detection rate of undetected asymptomatic, and the same of undetected symptomatic. A sensitivity analysis is presented stressing on the importance of higher face mask usage, rapid testing, and contact tracing for curbing the disease spread. An optimal control analysis is performed with two control parameters to study the increase and decrease of the infected population with and without control. This study suggests that improved and rapid testing will help in identifying more infectives, thereby contributing in the decline of disease transmission rate. Optimal control analysis results on stressing on the importance of abiding by strict usage of face mask and social distancing for drastic decrease in number of infections. Time series behaviour of the symptomatic, asymptomatic, and hospitalized population is studied for a range of parameters, resulting in thorough understanding of significance of different parameters. |
format | Online Article Text |
id | pubmed-8189841 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-81898412021-06-10 Mathematical modeling of COVID-19 in India and its states with optimal control Bandekar, Shraddha Ramdas Ghosh, Mini Model Earth Syst Environ Original Article A pandemic is an epidemic spread over a huge geographical area. COVID-19 is [Formula: see text] such pandemic documented after 1918 flu pandemic. In this work, we frame a mathematical epidemic model taking inspiration from the classic SIR model and develop a compartmental model with ten compartments to study the coronavirus dynamics in India and three of its most affected states, namely, Maharashtra, Karnataka, and Tamil Nadu, with inclusion of factors related to face mask efficacy, contact tracing, and testing along with quarantine and isolation. We fit the developed model and estimate optimum values of disease transmission rate, detection rate of undetected asymptomatic, and the same of undetected symptomatic. A sensitivity analysis is presented stressing on the importance of higher face mask usage, rapid testing, and contact tracing for curbing the disease spread. An optimal control analysis is performed with two control parameters to study the increase and decrease of the infected population with and without control. This study suggests that improved and rapid testing will help in identifying more infectives, thereby contributing in the decline of disease transmission rate. Optimal control analysis results on stressing on the importance of abiding by strict usage of face mask and social distancing for drastic decrease in number of infections. Time series behaviour of the symptomatic, asymptomatic, and hospitalized population is studied for a range of parameters, resulting in thorough understanding of significance of different parameters. Springer International Publishing 2021-06-10 2022 /pmc/articles/PMC8189841/ /pubmed/34127946 http://dx.doi.org/10.1007/s40808-021-01202-8 Text en © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Original Article Bandekar, Shraddha Ramdas Ghosh, Mini Mathematical modeling of COVID-19 in India and its states with optimal control |
title | Mathematical modeling of COVID-19 in India and its states with optimal control |
title_full | Mathematical modeling of COVID-19 in India and its states with optimal control |
title_fullStr | Mathematical modeling of COVID-19 in India and its states with optimal control |
title_full_unstemmed | Mathematical modeling of COVID-19 in India and its states with optimal control |
title_short | Mathematical modeling of COVID-19 in India and its states with optimal control |
title_sort | mathematical modeling of covid-19 in india and its states with optimal control |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8189841/ https://www.ncbi.nlm.nih.gov/pubmed/34127946 http://dx.doi.org/10.1007/s40808-021-01202-8 |
work_keys_str_mv | AT bandekarshraddharamdas mathematicalmodelingofcovid19inindiaanditsstateswithoptimalcontrol AT ghoshmini mathematicalmodelingofcovid19inindiaanditsstateswithoptimalcontrol |