Cargando…
Longitudinal cohorts for harnessing the electronic health record for disease prediction in a US population
PURPOSE: The depth and breadth of clinical data within electronic health record (EHR) systems paired with innovative machine learning methods can be leveraged to identify novel risk factors for complex diseases. However, analysing the EHR is challenging due to complexity and quality of the data. The...
Autores principales: | Manemann, Sheila M, St Sauver, Jennifer L, Liu, Hongfang, Larson, Nicholas B, Moon, Sungrim, Takahashi, Paul Y, Olson, Janet E, Rocca, Walter A, Miller, Virginia M, Therneau, Terry M, Ngufor, Che G, Roger, Veronique L, Zhao, Yiqing, Decker, Paul A, Killian, Jill M, Bielinski, Suzette J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190051/ https://www.ncbi.nlm.nih.gov/pubmed/34103314 http://dx.doi.org/10.1136/bmjopen-2020-044353 |
Ejemplares similares
-
Rethinking blood eosinophil counts: Epidemiology, associated chronic diseases, and increased risks of cardiovascular disease
por: Pongdee, Thanai, et al.
Publicado: (2022) -
Variability in Lipid Levels and Risk for Cardiovascular Disease: An Electronic Health Record–Based Population Cohort Study
por: Manemann, Sheila M., et al.
Publicado: (2023) -
Health Care Utilization and Death in Patients With Heart Failure During the COVID-19 Pandemic
por: Manemann, Sheila M., et al.
Publicado: (2023) -
Recent trends in cardiovascular disease deaths: a state specific perspective
por: Manemann, Sheila M., et al.
Publicado: (2021) -
Natural Language Processing and Machine Learning for Identifying Incident Stroke From Electronic Health Records: Algorithm Development and Validation
por: Zhao, Yiqing, et al.
Publicado: (2021)