Cargando…
FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency
Neural modelling tools are increasingly employed to describe, explain, and predict the human brain’s behavior. Among them, spiking neural networks (SNNs) make possible the simulation of neural activity at the level of single neurons, but their use is often threatened by the resources needed in terms...
Autores principales: | Susi, Gianluca, Garcés, Pilar, Paracone, Emanuele, Cristini, Alessandro, Salerno, Mario, Maestú, Fernando, Pereda, Ernesto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190312/ https://www.ncbi.nlm.nih.gov/pubmed/34108523 http://dx.doi.org/10.1038/s41598-021-91513-8 |
Ejemplares similares
-
A Neuro-Inspired System for Online Learning and Recognition of Parallel Spike Trains, Based on Spike Latency, and Heterosynaptic STDP
por: Susi, Gianluca, et al.
Publicado: (2018) -
nMNSD—A Spiking Neuron-Based Classifier That Combines Weight-Adjustment and Delay-Shift
por: Susi, Gianluca, et al.
Publicado: (2021) -
First spike latency sensitivity of spiking neuron models
por: Trotta, Laura, et al.
Publicado: (2013) -
Latency correction in sparse neuronal spike trains
por: Kreuz, Thomas, et al.
Publicado: (2022) -
Boost event-driven tactile learning with location spiking neurons
por: Kang, Peng, et al.
Publicado: (2023)