Cargando…
Deep Learning for Classification of Bone Lesions on Routine MRI
BACKGROUND: Radiologists have difficulty distinguishing benign from malignant bone lesions because these lesions may have similar imaging appearances. The purpose of this study was to develop a deep learning algorithm that can differentiate benign and malignant bone lesions using routine magnetic re...
Autores principales: | Eweje, Feyisope R., Bao, Bingting, Wu, Jing, Dalal, Deepa, Liao, Wei-hua, He, Yu, Luo, Yongheng, Lu, Shaolei, Zhang, Paul, Peng, Xianjing, Sebro, Ronnie, Bai, Harrison X., States, Lisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190437/ https://www.ncbi.nlm.nih.gov/pubmed/34098339 http://dx.doi.org/10.1016/j.ebiom.2021.103402 |
Ejemplares similares
-
Deep learning-based classification of primary bone tumors on radiographs: A preliminary study
por: He, Yu, et al.
Publicado: (2020) -
Translatability Analysis of National Institutes of Health–Funded Biomedical Research That Applies Artificial Intelligence
por: Eweje, Feyisope R., et al.
Publicado: (2022) -
Positron emission tomography/computed tomography imaging appearance of benign and classic “do not touch” osseous lesions
por: Elangovan, Stacey M, et al.
Publicado: (2019) -
FDG PET/CT evaluation of pathologically proven pulmonary lesions in an area of high endemic granulomatous disease
por: Sebro, Ronnie, et al.
Publicado: (2013) -
Radiomic features from MRI distinguish myxomas from myxofibrosarcomas
por: Martin-Carreras, Teresa, et al.
Publicado: (2019)