Cargando…
Representation learning applications in biological sequence analysis
Although remarkable advances have been reported in high-throughput sequencing, the ability to aptly analyze a substantial amount of rapidly generated biological (DNA/RNA/protein) sequencing data remains a critical hurdle. To tackle this issue, the application of natural language processing (NLP) to...
Autores principales: | Iuchi, Hitoshi, Matsutani, Taro, Yamada, Keisuke, Iwano, Natsuki, Sumi, Shunsuke, Hosoda, Shion, Zhao, Shitao, Fukunaga, Tsukasa, Hamada, Michiaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190442/ https://www.ncbi.nlm.nih.gov/pubmed/34141139 http://dx.doi.org/10.1016/j.csbj.2021.05.039 |
Ejemplares similares
-
DeepRaccess: high-speed RNA accessibility prediction using deep learning
por: Hara, Kaisei, et al.
Publicado: (2023) -
Umibato: estimation of time-varying microbial interaction using continuous-time regression hidden Markov model
por: Hosoda, Shion, et al.
Publicado: (2021) -
Discovering novel mutation signatures by latent Dirichlet allocation with variational Bayes inference
por: Matsutani, Taro, et al.
Publicado: (2019) -
Revealing the microbial assemblage structure in the human gut microbiome using latent Dirichlet allocation
por: Hosoda, Shion, et al.
Publicado: (2020) -
Jonckheere–Terpstra–Kendall-based non-parametric analysis of temporal differential gene expression
por: Iuchi, Hitoshi, et al.
Publicado: (2021)