Cargando…
Machine learning approaches to predicting amyloid status using data from an online research and recruitment registry: The Brain Health Registry
INTRODUCTION: This study investigated the extent to which subjective and objective data from an online registry can be analyzed using machine learning methodologies to predict the current brain amyloid beta (Aβ) status of registry participants. METHODS: We developed and optimized machine learning mo...
Autores principales: | Albright, Jack, Ashford, Miriam T., Jin, Chengshi, Neuhaus, John, Rabinovici, Gil D., Truran, Diana, Maruff, Paul, Mackin, R. Scott, Nosheny, Rachel L., Weiner, Michael W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190559/ https://www.ncbi.nlm.nih.gov/pubmed/34136635 http://dx.doi.org/10.1002/dad2.12207 |
Ejemplares similares
-
Predicting amyloid status using self‐report information from an online research and recruitment registry: The Brain Health Registry
por: Ashford, Miriam T., et al.
Publicado: (2020) -
Unsupervised online neuropsychological test performance for individuals with mild cognitive impairment and dementia: Results from the Brain Health Registry
por: Mackin, R. Scott, et al.
Publicado: (2018) -
Assessing risk for preclinical β-amyloid pathology with APOE, cognitive, and demographic information
por: Insel, Philip S., et al.
Publicado: (2016) -
Cognitive impairment and decline in cognitively normal older adults with high amyloid-β: A meta-analysis
por: Baker, Jenalle E., et al.
Publicado: (2016) -
Learning deficit in cognitively normal APOE ε4 carriers with LOW β‐amyloid
por: Lim, Yen Ying, et al.
Publicado: (2021)