Cargando…
An integrated analysis of human myeloid cells identifies gaps in in vitro models of in vivo biology
The Stemformatics myeloid atlas is an integrated transcriptome atlas of human macrophages and dendritic cells that systematically compares freshly isolated tissue-resident, cultured, and pluripotent stem cell–derived myeloid cells. Three classes of tissue-resident macrophage were identified: Kupffer...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190595/ https://www.ncbi.nlm.nih.gov/pubmed/33989517 http://dx.doi.org/10.1016/j.stemcr.2021.04.010 |
_version_ | 1783705717005352960 |
---|---|
author | Rajab, Nadia Angel, Paul W. Deng, Yidi Gu, Jennifer Jameson, Vanta Kurowska-Stolarska, Mariola Milling, Simon Pacheco, Chris M. Rutar, Matt Laslett, Andrew L. Lê Cao, Kim-Anh Choi, Jarny Wells, Christine A. |
author_facet | Rajab, Nadia Angel, Paul W. Deng, Yidi Gu, Jennifer Jameson, Vanta Kurowska-Stolarska, Mariola Milling, Simon Pacheco, Chris M. Rutar, Matt Laslett, Andrew L. Lê Cao, Kim-Anh Choi, Jarny Wells, Christine A. |
author_sort | Rajab, Nadia |
collection | PubMed |
description | The Stemformatics myeloid atlas is an integrated transcriptome atlas of human macrophages and dendritic cells that systematically compares freshly isolated tissue-resident, cultured, and pluripotent stem cell–derived myeloid cells. Three classes of tissue-resident macrophage were identified: Kupffer cells and microglia; monocyte-associated; and tumor-associated macrophages. Culture had a major impact on all primary cell phenotypes. Pluripotent stem cell–derived macrophages were characterized by atypical expression of collagen and a highly efferocytotic phenotype. Myeloid subsets, and phenotypes associated with derivation, were reproducible across experimental series including data projected from single-cell studies, demonstrating that the atlas provides a robust reference for myeloid phenotypes. Implementation in Stemformatics.org allows users to visualize patterns of sample grouping or gene expression for user-selected conditions and supports temporary upload of your own microarray or RNA sequencing samples, including single-cell data, to benchmark against the atlas. |
format | Online Article Text |
id | pubmed-8190595 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-81905952021-06-17 An integrated analysis of human myeloid cells identifies gaps in in vitro models of in vivo biology Rajab, Nadia Angel, Paul W. Deng, Yidi Gu, Jennifer Jameson, Vanta Kurowska-Stolarska, Mariola Milling, Simon Pacheco, Chris M. Rutar, Matt Laslett, Andrew L. Lê Cao, Kim-Anh Choi, Jarny Wells, Christine A. Stem Cell Reports Resource The Stemformatics myeloid atlas is an integrated transcriptome atlas of human macrophages and dendritic cells that systematically compares freshly isolated tissue-resident, cultured, and pluripotent stem cell–derived myeloid cells. Three classes of tissue-resident macrophage were identified: Kupffer cells and microglia; monocyte-associated; and tumor-associated macrophages. Culture had a major impact on all primary cell phenotypes. Pluripotent stem cell–derived macrophages were characterized by atypical expression of collagen and a highly efferocytotic phenotype. Myeloid subsets, and phenotypes associated with derivation, were reproducible across experimental series including data projected from single-cell studies, demonstrating that the atlas provides a robust reference for myeloid phenotypes. Implementation in Stemformatics.org allows users to visualize patterns of sample grouping or gene expression for user-selected conditions and supports temporary upload of your own microarray or RNA sequencing samples, including single-cell data, to benchmark against the atlas. Elsevier 2021-05-13 /pmc/articles/PMC8190595/ /pubmed/33989517 http://dx.doi.org/10.1016/j.stemcr.2021.04.010 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Resource Rajab, Nadia Angel, Paul W. Deng, Yidi Gu, Jennifer Jameson, Vanta Kurowska-Stolarska, Mariola Milling, Simon Pacheco, Chris M. Rutar, Matt Laslett, Andrew L. Lê Cao, Kim-Anh Choi, Jarny Wells, Christine A. An integrated analysis of human myeloid cells identifies gaps in in vitro models of in vivo biology |
title | An integrated analysis of human myeloid cells identifies gaps in in vitro models of in vivo biology |
title_full | An integrated analysis of human myeloid cells identifies gaps in in vitro models of in vivo biology |
title_fullStr | An integrated analysis of human myeloid cells identifies gaps in in vitro models of in vivo biology |
title_full_unstemmed | An integrated analysis of human myeloid cells identifies gaps in in vitro models of in vivo biology |
title_short | An integrated analysis of human myeloid cells identifies gaps in in vitro models of in vivo biology |
title_sort | integrated analysis of human myeloid cells identifies gaps in in vitro models of in vivo biology |
topic | Resource |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190595/ https://www.ncbi.nlm.nih.gov/pubmed/33989517 http://dx.doi.org/10.1016/j.stemcr.2021.04.010 |
work_keys_str_mv | AT rajabnadia anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT angelpaulw anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT dengyidi anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT gujennifer anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT jamesonvanta anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT kurowskastolarskamariola anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT millingsimon anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT pachecochrism anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT rutarmatt anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT laslettandrewl anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT lecaokimanh anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT choijarny anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT wellschristinea anintegratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT rajabnadia integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT angelpaulw integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT dengyidi integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT gujennifer integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT jamesonvanta integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT kurowskastolarskamariola integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT millingsimon integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT pachecochrism integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT rutarmatt integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT laslettandrewl integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT lecaokimanh integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT choijarny integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology AT wellschristinea integratedanalysisofhumanmyeloidcellsidentifiesgapsininvitromodelsofinvivobiology |