Cargando…
Predicting Semantic Similarity Between Clinical Sentence Pairs Using Transformer Models: Evaluation and Representational Analysis
BACKGROUND: Semantic textual similarity (STS) is a natural language processing (NLP) task that involves assigning a similarity score to 2 snippets of text based on their meaning. This task is particularly difficult in the domain of clinical text, which often features specialized language and the fre...
Autores principales: | Ormerod, Mark, Martínez del Rincón, Jesús, Devereux, Barry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190645/ https://www.ncbi.nlm.nih.gov/pubmed/34037527 http://dx.doi.org/10.2196/23099 |
Ejemplares similares
-
A Grammar-Based Semantic Similarity Algorithm for Natural Language Sentences
por: Lee, Ming Che, et al.
Publicado: (2014) -
BIOSSES: a semantic sentence similarity estimation system for the biomedical domain
por: Soğancıoğlu, Gizem, et al.
Publicado: (2017) -
Neural sentence embedding models for semantic similarity estimation in the biomedical domain
por: Blagec, Kathrin, et al.
Publicado: (2019) -
Neural Correlates of Semantic Prediction and Resolution in Sentence Processing
por: Grisoni, Luigi, et al.
Publicado: (2017) -
The contribution of semantics to the sentence superiority effect
por: Massol, Stéphanie, et al.
Publicado: (2021)