Cargando…
Solubility Prediction from Molecular Properties and Analytical Data Using an In-phase Deep Neural Network (Ip-DNN)
[Image: see text] Materials informatics is an emerging field that allows us to predict the properties of materials and has been applied in various research and development fields, such as materials science. In particular, solubility factors such as the Hansen and Hildebrand solubility parameters (HS...
Autores principales: | Kurotani, Atsushi, Kakiuchi, Toshifumi, Kikuchi, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190808/ https://www.ncbi.nlm.nih.gov/pubmed/34124451 http://dx.doi.org/10.1021/acsomega.1c01035 |
Ejemplares similares
-
EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm
por: Kim, Seong Gon, et al.
Publicado: (2016) -
An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition
por: Lozano-Diez, Alicia, et al.
Publicado: (2017) -
Intelligent Sports Video Classification Based on Deep Neural Network (DNN) Algorithm and Transfer Learning
por: Guo, Xiaoping
Publicado: (2021) -
DAISM-DNN(XMBD): Highly accurate cell type proportion estimation with in silico data augmentation and deep neural networks
por: Lin, Yating, et al.
Publicado: (2022) -
DNN Intellectual Property Extraction Using Composite Data
por: Mosafi, Itay, et al.
Publicado: (2022)