Cargando…

Mathematical Model Coupled to Neural Networks Calculates the Extraction Recovery of Polycyclic Aromatic Hydrocarbons in Problematic Matrix

[Image: see text] Unknown extraction recovery from solid matrix samples leads to meaningless chemical analysis results. It cannot always be determined, and it depends on the complexity of the matrix and properties of the extracted substances. This paper combines a mathematical model with the machine...

Descripción completa

Detalles Bibliográficos
Autores principales: Drevinskas, Tomas, Maruška, Audrius, Bimbiraitė-Survilienė, Kristina, Du̅da, Gediminas, Stankevičius, Mantas, Tiso, Nicola, Mickienė, Ru̅ta, Pedišius, Vilmantas, Levišauskas, Donatas, Kaškonienė, Vilma, Ragažinskienė, Ona, Grigiškis, Saulius, Donati, Enrica, Zacchini, Massimo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190882/
https://www.ncbi.nlm.nih.gov/pubmed/34124484
http://dx.doi.org/10.1021/acsomega.1c01737
_version_ 1783705771888869376
author Drevinskas, Tomas
Maruška, Audrius
Bimbiraitė-Survilienė, Kristina
Du̅da, Gediminas
Stankevičius, Mantas
Tiso, Nicola
Mickienė, Ru̅ta
Pedišius, Vilmantas
Levišauskas, Donatas
Kaškonienė, Vilma
Ragažinskienė, Ona
Grigiškis, Saulius
Donati, Enrica
Zacchini, Massimo
author_facet Drevinskas, Tomas
Maruška, Audrius
Bimbiraitė-Survilienė, Kristina
Du̅da, Gediminas
Stankevičius, Mantas
Tiso, Nicola
Mickienė, Ru̅ta
Pedišius, Vilmantas
Levišauskas, Donatas
Kaškonienė, Vilma
Ragažinskienė, Ona
Grigiškis, Saulius
Donati, Enrica
Zacchini, Massimo
author_sort Drevinskas, Tomas
collection PubMed
description [Image: see text] Unknown extraction recovery from solid matrix samples leads to meaningless chemical analysis results. It cannot always be determined, and it depends on the complexity of the matrix and properties of the extracted substances. This paper combines a mathematical model with the machine learning method—neural networks that predict liquid extraction recovery from solid matrices. The prediction of the three-stage extraction recovery of polycyclic aromatic hydrocarbons from a wooden railway sleeper matrix is demonstrated. Calculation of the extraction recovery requires the extract’s volume to be measured and the polycyclic aromatic hydrocarbons’ concentration to be determined for each stage. These data are used to calculate the input values for a neural network model. Lowest mean-squared error (0.014) and smallest retraining relative standard deviation (20.7%) were achieved with the neural network setup 6:5:5:4:1 (six inputs, three hidden layers with five, five, and four neurons in a layer, and one output). To train such a neural network, it took less than 8000 steps—less than a second––using an average-performance laptop. The relative standard deviation of the extraction recovery predictions ranged between 1.13 and 5.15%. The three-stage recovery of the extracted dry sample showed 104% of three different polycyclic aromatic hydrocarbons. The extracted wet sample recovery was 71, 98, and 55% for phenanthrene, anthracene, and pyrene, respectively. This method is applicable in the environmental, food processing, pharmaceutical, biochemical, biotechnology, and space research areas where extraction should be performed autonomously without human interference.
format Online
Article
Text
id pubmed-8190882
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-81908822021-06-11 Mathematical Model Coupled to Neural Networks Calculates the Extraction Recovery of Polycyclic Aromatic Hydrocarbons in Problematic Matrix Drevinskas, Tomas Maruška, Audrius Bimbiraitė-Survilienė, Kristina Du̅da, Gediminas Stankevičius, Mantas Tiso, Nicola Mickienė, Ru̅ta Pedišius, Vilmantas Levišauskas, Donatas Kaškonienė, Vilma Ragažinskienė, Ona Grigiškis, Saulius Donati, Enrica Zacchini, Massimo ACS Omega [Image: see text] Unknown extraction recovery from solid matrix samples leads to meaningless chemical analysis results. It cannot always be determined, and it depends on the complexity of the matrix and properties of the extracted substances. This paper combines a mathematical model with the machine learning method—neural networks that predict liquid extraction recovery from solid matrices. The prediction of the three-stage extraction recovery of polycyclic aromatic hydrocarbons from a wooden railway sleeper matrix is demonstrated. Calculation of the extraction recovery requires the extract’s volume to be measured and the polycyclic aromatic hydrocarbons’ concentration to be determined for each stage. These data are used to calculate the input values for a neural network model. Lowest mean-squared error (0.014) and smallest retraining relative standard deviation (20.7%) were achieved with the neural network setup 6:5:5:4:1 (six inputs, three hidden layers with five, five, and four neurons in a layer, and one output). To train such a neural network, it took less than 8000 steps—less than a second––using an average-performance laptop. The relative standard deviation of the extraction recovery predictions ranged between 1.13 and 5.15%. The three-stage recovery of the extracted dry sample showed 104% of three different polycyclic aromatic hydrocarbons. The extracted wet sample recovery was 71, 98, and 55% for phenanthrene, anthracene, and pyrene, respectively. This method is applicable in the environmental, food processing, pharmaceutical, biochemical, biotechnology, and space research areas where extraction should be performed autonomously without human interference. American Chemical Society 2021-05-21 /pmc/articles/PMC8190882/ /pubmed/34124484 http://dx.doi.org/10.1021/acsomega.1c01737 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Drevinskas, Tomas
Maruška, Audrius
Bimbiraitė-Survilienė, Kristina
Du̅da, Gediminas
Stankevičius, Mantas
Tiso, Nicola
Mickienė, Ru̅ta
Pedišius, Vilmantas
Levišauskas, Donatas
Kaškonienė, Vilma
Ragažinskienė, Ona
Grigiškis, Saulius
Donati, Enrica
Zacchini, Massimo
Mathematical Model Coupled to Neural Networks Calculates the Extraction Recovery of Polycyclic Aromatic Hydrocarbons in Problematic Matrix
title Mathematical Model Coupled to Neural Networks Calculates the Extraction Recovery of Polycyclic Aromatic Hydrocarbons in Problematic Matrix
title_full Mathematical Model Coupled to Neural Networks Calculates the Extraction Recovery of Polycyclic Aromatic Hydrocarbons in Problematic Matrix
title_fullStr Mathematical Model Coupled to Neural Networks Calculates the Extraction Recovery of Polycyclic Aromatic Hydrocarbons in Problematic Matrix
title_full_unstemmed Mathematical Model Coupled to Neural Networks Calculates the Extraction Recovery of Polycyclic Aromatic Hydrocarbons in Problematic Matrix
title_short Mathematical Model Coupled to Neural Networks Calculates the Extraction Recovery of Polycyclic Aromatic Hydrocarbons in Problematic Matrix
title_sort mathematical model coupled to neural networks calculates the extraction recovery of polycyclic aromatic hydrocarbons in problematic matrix
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190882/
https://www.ncbi.nlm.nih.gov/pubmed/34124484
http://dx.doi.org/10.1021/acsomega.1c01737
work_keys_str_mv AT drevinskastomas mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT maruskaaudrius mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT bimbiraitesurvilienekristina mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT dudagediminas mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT stankeviciusmantas mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT tisonicola mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT mickieneruta mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT pedisiusvilmantas mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT levisauskasdonatas mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT kaskonienevilma mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT ragazinskieneona mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT grigiskissaulius mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT donatienrica mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix
AT zacchinimassimo mathematicalmodelcoupledtoneuralnetworkscalculatestheextractionrecoveryofpolycyclicaromatichydrocarbonsinproblematicmatrix