Cargando…
Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information
[Image: see text] It is well believed that machine learning models could help to predict the formation energies of materials if all elemental and crystal structural details are known. In this paper, it is shown that even without detailed crystal structure information, the formation energies of binar...
Autores principales: | Mao, Yuanqing, Yang, Hongliang, Sheng, Ye, Wang, Jiping, Ouyang, Runhai, Ye, Caichao, Yang, Jiong, Zhang, Wenqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190927/ https://www.ncbi.nlm.nih.gov/pubmed/34124476 http://dx.doi.org/10.1021/acsomega.1c01517 |
Ejemplares similares
-
Theoretical Studies on the Role of Guest in α-CL-20/Guest Crystals
por: Zhou, Mingming, et al.
Publicado: (2022) -
Effects of non-pharmacological interventions on anxiety, depression, and sleep quality in patients with postoperative glaucoma: A protocol for systematic review and network meta-analysis
por: Liu, Jiong, et al.
Publicado: (2021) -
Support Vector Machine Classification and Regression
Prioritize Different Structural Features for Binary Compound Activity
and Potency Value Prediction
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2017) -
The quest for the reliability of machine learning models in binary classification on tabular data
por: Araujo Santos, Vitor Cirilo, et al.
Publicado: (2023) -
Multiclass Cancer Classification by Using Fuzzy Support Vector Machine and Binary Decision Tree With Gene Selection
por: Mao, Yong, et al.
Publicado: (2005)