Cargando…
Confidence interval methods for antimicrobial resistance surveillance data
BACKGROUND: Antimicrobial resistance (AMR) is one of the greatest global health challenges today, but burden assessment is hindered by uncertainty of AMR prevalence estimates. Geographical representation of AMR estimates typically pools data collected from several laboratories; however, these aggreg...
Autores principales: | Kalanxhi, Erta, Osena, Gilbert, Kapoor, Geetanjali, Klein, Eili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191092/ https://www.ncbi.nlm.nih.gov/pubmed/34108041 http://dx.doi.org/10.1186/s13756-021-00960-5 |
Ejemplares similares
-
Modelling COVID-19 transmission in Africa: countrywise projections of total and severe infections under different lockdown scenarios
por: Frost, Isabel, et al.
Publicado: (2021) -
HOW CONFIDENT IS THE CONFIDENCE INTERVAL
por: Egbuchulem, K.I.
Publicado: (2022) -
Calculating unreported confidence intervals for paired data
por: Hirji, Karim F, et al.
Publicado: (2011) -
Immune-Modulating Effects of Conventional Therapies in Colorectal Cancer
por: Kalanxhi, Erta, et al.
Publicado: (2020) -
The fallacy of placing confidence in confidence intervals
por: Morey, Richard D., et al.
Publicado: (2015)