Cargando…

H3K27ac-induced lncRNA PAXIP1-AS1 promotes cell proliferation, migration, EMT and apoptosis in ovarian cancer by targeting miR-6744-5p/PCBP2 axis

We aimed to explore role of lncRNA PAX-interacting protein 1-antisense RNA1 (PAXIP1-AS1) in ovarian cancer (OC). RT-qPCR analysis identified upregulation of PAXIP1-AS1 in OC cell lines. Functionally, PAXIP1-AS1 knockdown inhibited cell proliferation, accelerated cell apoptosis, and suppressed cell m...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Yimin, Zheng, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191132/
https://www.ncbi.nlm.nih.gov/pubmed/34108034
http://dx.doi.org/10.1186/s13048-021-00822-z
_version_ 1783705817750437888
author Ma, Yimin
Zheng, Wei
author_facet Ma, Yimin
Zheng, Wei
author_sort Ma, Yimin
collection PubMed
description We aimed to explore role of lncRNA PAX-interacting protein 1-antisense RNA1 (PAXIP1-AS1) in ovarian cancer (OC). RT-qPCR analysis identified upregulation of PAXIP1-AS1 in OC cell lines. Functionally, PAXIP1-AS1 knockdown inhibited cell proliferation, accelerated cell apoptosis, and suppressed cell migration and epithelial-mesenchymal transition (EMT) process. Upregulation of PAXIP1-AS1 was induced by CBP-mediated H3K27 acetylation (H3K27ac) via bioinformatic analysis and ChIP assay. Furthermore, PAXIP1-AS1 served as a competing endogenous RNA (ceRNA) to regulate PCBP2 expression by sponging microRNA-6744-5p (miR-6744-5p). Restoration experiments showed that overexpressed PCBP2 rescued effects of silenced PAXIP1-AS1 on cell proliferation, apoptosis, migration and EMT. Overall, lncRNA PAXIP1-AS1 activated by H3K27ac functioned as a tumor promoter in OC via mediating miR-6744-5p/PCBP2 axis, which provided promising insight into exploration on OC therapy.
format Online
Article
Text
id pubmed-8191132
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-81911322021-06-10 H3K27ac-induced lncRNA PAXIP1-AS1 promotes cell proliferation, migration, EMT and apoptosis in ovarian cancer by targeting miR-6744-5p/PCBP2 axis Ma, Yimin Zheng, Wei J Ovarian Res Research We aimed to explore role of lncRNA PAX-interacting protein 1-antisense RNA1 (PAXIP1-AS1) in ovarian cancer (OC). RT-qPCR analysis identified upregulation of PAXIP1-AS1 in OC cell lines. Functionally, PAXIP1-AS1 knockdown inhibited cell proliferation, accelerated cell apoptosis, and suppressed cell migration and epithelial-mesenchymal transition (EMT) process. Upregulation of PAXIP1-AS1 was induced by CBP-mediated H3K27 acetylation (H3K27ac) via bioinformatic analysis and ChIP assay. Furthermore, PAXIP1-AS1 served as a competing endogenous RNA (ceRNA) to regulate PCBP2 expression by sponging microRNA-6744-5p (miR-6744-5p). Restoration experiments showed that overexpressed PCBP2 rescued effects of silenced PAXIP1-AS1 on cell proliferation, apoptosis, migration and EMT. Overall, lncRNA PAXIP1-AS1 activated by H3K27ac functioned as a tumor promoter in OC via mediating miR-6744-5p/PCBP2 axis, which provided promising insight into exploration on OC therapy. BioMed Central 2021-06-09 /pmc/articles/PMC8191132/ /pubmed/34108034 http://dx.doi.org/10.1186/s13048-021-00822-z Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Ma, Yimin
Zheng, Wei
H3K27ac-induced lncRNA PAXIP1-AS1 promotes cell proliferation, migration, EMT and apoptosis in ovarian cancer by targeting miR-6744-5p/PCBP2 axis
title H3K27ac-induced lncRNA PAXIP1-AS1 promotes cell proliferation, migration, EMT and apoptosis in ovarian cancer by targeting miR-6744-5p/PCBP2 axis
title_full H3K27ac-induced lncRNA PAXIP1-AS1 promotes cell proliferation, migration, EMT and apoptosis in ovarian cancer by targeting miR-6744-5p/PCBP2 axis
title_fullStr H3K27ac-induced lncRNA PAXIP1-AS1 promotes cell proliferation, migration, EMT and apoptosis in ovarian cancer by targeting miR-6744-5p/PCBP2 axis
title_full_unstemmed H3K27ac-induced lncRNA PAXIP1-AS1 promotes cell proliferation, migration, EMT and apoptosis in ovarian cancer by targeting miR-6744-5p/PCBP2 axis
title_short H3K27ac-induced lncRNA PAXIP1-AS1 promotes cell proliferation, migration, EMT and apoptosis in ovarian cancer by targeting miR-6744-5p/PCBP2 axis
title_sort h3k27ac-induced lncrna paxip1-as1 promotes cell proliferation, migration, emt and apoptosis in ovarian cancer by targeting mir-6744-5p/pcbp2 axis
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191132/
https://www.ncbi.nlm.nih.gov/pubmed/34108034
http://dx.doi.org/10.1186/s13048-021-00822-z
work_keys_str_mv AT mayimin h3k27acinducedlncrnapaxip1as1promotescellproliferationmigrationemtandapoptosisinovariancancerbytargetingmir67445ppcbp2axis
AT zhengwei h3k27acinducedlncrnapaxip1as1promotescellproliferationmigrationemtandapoptosisinovariancancerbytargetingmir67445ppcbp2axis