Cargando…
GNINA 1.0: molecular docking with deep learning
Molecular docking computationally predicts the conformation of a small molecule when binding to a receptor. Scoring functions are a vital piece of any molecular docking pipeline as they determine the fitness of sampled poses. Here we describe and evaluate the 1.0 release of the Gnina docking softwar...
Autores principales: | McNutt, Andrew T., Francoeur, Paul, Aggarwal, Rishal, Masuda, Tomohide, Meli, Rocco, Ragoza, Matthew, Sunseri, Jocelyn, Koes, David Ryan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191141/ https://www.ncbi.nlm.nih.gov/pubmed/34108002 http://dx.doi.org/10.1186/s13321-021-00522-2 |
Ejemplares similares
-
Virtual Screening with Gnina 1.0
por: Sunseri, Jocelyn, et al.
Publicado: (2021) -
Generating 3D molecules conditional on receptor binding sites with deep generative models
por: Ragoza, Matthew, et al.
Publicado: (2022) -
Pharmit: interactive exploration of chemical space
por: Sunseri, Jocelyn, et al.
Publicado: (2016) -
DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0
por: Jiang, Xiaohui, et al.
Publicado: (2008) -
spyrmsd: symmetry-corrected RMSD calculations in Python
por: Meli, Rocco, et al.
Publicado: (2020)