Cargando…

Ubiquitous convalescent plasma: An artificial universal plasma for COVID-19 patients

OBJECTIVES AND BACKGROUND: In December 2019, the first case of COVID-19 was reported in Wuhan, China. Its causative virus, is a novel strain of RNA viruses with high mortality rate. There is no definitive treatment, but among available approaches the use of recovered patients’ plasma containing spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Sattarzadeh Bardsiri, Mahla, Kouhbananinejad, Seyedeh Mehrnaz, Vahidi, Reza, Soleimany, Saeed, Moghadari, Masoud, Derakhshani, Ali, Kashani, Bahareh, Farsinejad, Alireza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191286/
https://www.ncbi.nlm.nih.gov/pubmed/34144875
http://dx.doi.org/10.1016/j.transci.2021.103188
Descripción
Sumario:OBJECTIVES AND BACKGROUND: In December 2019, the first case of COVID-19 was reported in Wuhan, China. Its causative virus, is a novel strain of RNA viruses with high mortality rate. There is no definitive treatment, but among available approaches the use of recovered patients’ plasma containing specific antibodies can enhance the immune response against coronavirus. However, the dearth of eligible donors and also ABO incompatibility in plasma transfusion, have limited this therapeutic method. Therefore, it is highly desirable to introduce a simple procedure that allows efficient reduction or even removal of natural ABO antibodies. Accordingly, we aimed to evaluate a RBC-mediated adsorption technique that reduces the titer of the mentioned antibodies in plasma. METHODS/MATERIALS: This experimental study was conducted in Kerman University of Medical Sciences, Kerman, Iran. The pre- and post-incubation antibody titers of 168 plasma samples were determined. For incubation, each plasma sample was exposed (60 min) to different percentages of RBCs at room temperature or 4 °C. RESULTS: The results evidenced that both the concentration of RBCs and temperature had significant decreasing effects on antibody titer (P < 0.001) and all concentrations significantly reduced titer. Compared to RT, 4 °C further reduced the antibody titer. Overall, the best incubation condition for reducing antibody titer in all blood groups was 4 °C and 2% RBCs concentration. CONCLUSION: The presented adsorption procedure is able to produce universal plasma (we call it Ubiquitous Convalescent Plasma) with a non-immunogenic level of ABO mismatch antibodies which can be used for COVID-19 patients with any type of blood group with desirable simplicity, feasibility, and efficacy.