Cargando…

Multiple testing correction over contrasts for brain imaging

The multiple testing problem arises not only when there are many voxels or vertices in an image representation of the brain, but also when multiple contrasts of parameter estimates (that represent hypotheses) are tested in the same general linear model. We argue that a correction for this multiplici...

Descripción completa

Detalles Bibliográficos
Autores principales: Alberton, Bianca A.V., Nichols, Thomas E., Gamba, Humberto R., Winkler, Anderson M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191638/
https://www.ncbi.nlm.nih.gov/pubmed/32201328
http://dx.doi.org/10.1016/j.neuroimage.2020.116760
Descripción
Sumario:The multiple testing problem arises not only when there are many voxels or vertices in an image representation of the brain, but also when multiple contrasts of parameter estimates (that represent hypotheses) are tested in the same general linear model. We argue that a correction for this multiplicity must be performed to avoid excess of false positives. Various methods for correction have been proposed in the literature, but few have been applied to brain imaging. Here we discuss and compare different methods to make such correction in different scenarios, showing that one classical and well known method is invalid, and argue that permutation is the best option to perform such correction due to its exactness and flexibility to handle a variety of common imaging situations.