Cargando…
Discovery of molecular features underlying the morphological landscape by integrating spatial transcriptomic data with deep features of tissue images
Profiling molecular features associated with the morphological landscape of tissue is crucial for investigating the structural and spatial patterns that underlie the biological function of tissues. In this study, we present a new method, spatial gene expression patterns by deep learning of tissue im...
Autores principales: | Bae, Sungwoo, Choi, Hongyoon, Lee, Dong Soo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191797/ https://www.ncbi.nlm.nih.gov/pubmed/33619564 http://dx.doi.org/10.1093/nar/gkab095 |
Ejemplares similares
-
CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data
por: Bae, Sungwoo, et al.
Publicado: (2022) -
spSeudoMap: cell type mapping of spatial transcriptomics using unmatched single-cell RNA-seq data
por: Bae, Sungwoo, et al.
Publicado: (2023) -
DeepST: identifying spatial domains in spatial transcriptomics by deep learning
por: Xu, Chang, et al.
Publicado: (2022) -
Uncovering tissue-specific binding features from differential deep learning
por: Phuycharoen, Mike, et al.
Publicado: (2020) -
The spatial landscape of gene expression isoforms in tissue sections
por: Lebrigand, Kevin, et al.
Publicado: (2023)