Cargando…

CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance

Sweet basil (Ocimum basilicum) is an economically important allotetraploid (2n = 4x = 48) herb whose global production is threatened by downy mildew disease caused by the obligate biotrophic oomycete, Peronospora belbahrii. Generation of disease resistant cultivars by mutagenesis of susceptibility (...

Descripción completa

Detalles Bibliográficos
Autores principales: Hasley, Jeremieh Abram R., Navet, Natasha, Tian, Miaoying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191900/
https://www.ncbi.nlm.nih.gov/pubmed/34111225
http://dx.doi.org/10.1371/journal.pone.0253245
_version_ 1783705946570096640
author Hasley, Jeremieh Abram R.
Navet, Natasha
Tian, Miaoying
author_facet Hasley, Jeremieh Abram R.
Navet, Natasha
Tian, Miaoying
author_sort Hasley, Jeremieh Abram R.
collection PubMed
description Sweet basil (Ocimum basilicum) is an economically important allotetraploid (2n = 4x = 48) herb whose global production is threatened by downy mildew disease caused by the obligate biotrophic oomycete, Peronospora belbahrii. Generation of disease resistant cultivars by mutagenesis of susceptibility (S) genes via CRISPR/Cas9 is currently one of the most promising strategies to maintain favored traits while improving disease resistance. Previous studies have identified Arabidopsis DMR6 (Downy Mildew Resistance 6) as an S gene required for pathogenesis of the downy mildew-causing oomycete pathogen Hyaloperonospora arabidopsidis. In this study, a sweet basil homolog of DMR6, designated ObDMR6, was identified in the popular sweet basil cultivar Genoveser and found to exist with a high copy number in the genome with polymorphisms among the variants. Two CRISPR/Cas9 constructs expressing one or two single guide RNAs (sgRNAs) targeting the conserved regions of ObDMR6 variants were generated and used to transform Genoveser via Agrobacterium-mediated transformation. 56 T0 lines were generated, and mutations of ObDMR6 were detected by analyzing the Sanger sequencing chromatograms of an ObDMR6 fragment using the Interference of CRISPR Edits (ICE) software. Among 54 lines containing mutations in the targeted sites, 13 had an indel percentage greater than 96% suggesting a near-complete knockout (KO) of ObDMR6. Three representative transgene-free lines with near-complete KO of ObDMR6 determined by ICE were identified in the T1 segregating populations derived from three independent T0 lines. The mutations were further confirmed using amplicon deep sequencing. Disease assays conducted on T2 seedlings of the above T1 lines showed a reduction in production of sporangia by 61–68% compared to the wild-type plants and 69–93% reduction in relative pathogen biomass determined by quantitative PCR (qPCR). This study not only has generated transgene-free sweet basil varieties with improved downy mildew resistance, but also contributed to our understanding of the molecular interactions of sweet basil-P. belbahrii.
format Online
Article
Text
id pubmed-8191900
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-81919002021-06-10 CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance Hasley, Jeremieh Abram R. Navet, Natasha Tian, Miaoying PLoS One Research Article Sweet basil (Ocimum basilicum) is an economically important allotetraploid (2n = 4x = 48) herb whose global production is threatened by downy mildew disease caused by the obligate biotrophic oomycete, Peronospora belbahrii. Generation of disease resistant cultivars by mutagenesis of susceptibility (S) genes via CRISPR/Cas9 is currently one of the most promising strategies to maintain favored traits while improving disease resistance. Previous studies have identified Arabidopsis DMR6 (Downy Mildew Resistance 6) as an S gene required for pathogenesis of the downy mildew-causing oomycete pathogen Hyaloperonospora arabidopsidis. In this study, a sweet basil homolog of DMR6, designated ObDMR6, was identified in the popular sweet basil cultivar Genoveser and found to exist with a high copy number in the genome with polymorphisms among the variants. Two CRISPR/Cas9 constructs expressing one or two single guide RNAs (sgRNAs) targeting the conserved regions of ObDMR6 variants were generated and used to transform Genoveser via Agrobacterium-mediated transformation. 56 T0 lines were generated, and mutations of ObDMR6 were detected by analyzing the Sanger sequencing chromatograms of an ObDMR6 fragment using the Interference of CRISPR Edits (ICE) software. Among 54 lines containing mutations in the targeted sites, 13 had an indel percentage greater than 96% suggesting a near-complete knockout (KO) of ObDMR6. Three representative transgene-free lines with near-complete KO of ObDMR6 determined by ICE were identified in the T1 segregating populations derived from three independent T0 lines. The mutations were further confirmed using amplicon deep sequencing. Disease assays conducted on T2 seedlings of the above T1 lines showed a reduction in production of sporangia by 61–68% compared to the wild-type plants and 69–93% reduction in relative pathogen biomass determined by quantitative PCR (qPCR). This study not only has generated transgene-free sweet basil varieties with improved downy mildew resistance, but also contributed to our understanding of the molecular interactions of sweet basil-P. belbahrii. Public Library of Science 2021-06-10 /pmc/articles/PMC8191900/ /pubmed/34111225 http://dx.doi.org/10.1371/journal.pone.0253245 Text en © 2021 Hasley et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Hasley, Jeremieh Abram R.
Navet, Natasha
Tian, Miaoying
CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance
title CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance
title_full CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance
title_fullStr CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance
title_full_unstemmed CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance
title_short CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance
title_sort crispr/cas9-mediated mutagenesis of sweet basil candidate susceptibility gene obdmr6 enhances downy mildew resistance
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191900/
https://www.ncbi.nlm.nih.gov/pubmed/34111225
http://dx.doi.org/10.1371/journal.pone.0253245
work_keys_str_mv AT hasleyjeremiehabramr crisprcas9mediatedmutagenesisofsweetbasilcandidatesusceptibilitygeneobdmr6enhancesdownymildewresistance
AT navetnatasha crisprcas9mediatedmutagenesisofsweetbasilcandidatesusceptibilitygeneobdmr6enhancesdownymildewresistance
AT tianmiaoying crisprcas9mediatedmutagenesisofsweetbasilcandidatesusceptibilitygeneobdmr6enhancesdownymildewresistance