Cargando…
The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning
To survive, animals have to quickly modify their behaviour when the reward changes. The internal representations responsible for this are updated through synaptic weight changes, mediated by certain neuromodulators conveying feedback from the environment. In previous experiments, we discovered a for...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192019/ https://www.ncbi.nlm.nih.gov/pubmed/34111110 http://dx.doi.org/10.1371/journal.pcbi.1009017 |
_version_ | 1783705970400034816 |
---|---|
author | Ang, Grace Wan Yu Tang, Clara S. Hay, Y. Audrey Zannone, Sara Paulsen, Ole Clopath, Claudia |
author_facet | Ang, Grace Wan Yu Tang, Clara S. Hay, Y. Audrey Zannone, Sara Paulsen, Ole Clopath, Claudia |
author_sort | Ang, Grace Wan Yu |
collection | PubMed |
description | To survive, animals have to quickly modify their behaviour when the reward changes. The internal representations responsible for this are updated through synaptic weight changes, mediated by certain neuromodulators conveying feedback from the environment. In previous experiments, we discovered a form of hippocampal Spike-Timing-Dependent-Plasticity (STDP) that is sequentially modulated by acetylcholine and dopamine. Acetylcholine facilitates synaptic depression, while dopamine retroactively converts the depression into potentiation. When these experimental findings were implemented as a learning rule in a computational model, our simulations showed that cholinergic-facilitated depression is important for reversal learning. In the present study, we tested the model’s prediction by optogenetically inactivating cholinergic neurons in mice during a hippocampus-dependent spatial learning task with changing rewards. We found that reversal learning, but not initial place learning, was impaired, verifying our computational prediction that acetylcholine-modulated plasticity promotes the unlearning of old reward locations. Further, differences in neuromodulator concentrations in the model captured mouse-by-mouse performance variability in the optogenetic experiments. Our line of work sheds light on how neuromodulators enable the learning of new contingencies. |
format | Online Article Text |
id | pubmed-8192019 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-81920192021-06-10 The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning Ang, Grace Wan Yu Tang, Clara S. Hay, Y. Audrey Zannone, Sara Paulsen, Ole Clopath, Claudia PLoS Comput Biol Research Article To survive, animals have to quickly modify their behaviour when the reward changes. The internal representations responsible for this are updated through synaptic weight changes, mediated by certain neuromodulators conveying feedback from the environment. In previous experiments, we discovered a form of hippocampal Spike-Timing-Dependent-Plasticity (STDP) that is sequentially modulated by acetylcholine and dopamine. Acetylcholine facilitates synaptic depression, while dopamine retroactively converts the depression into potentiation. When these experimental findings were implemented as a learning rule in a computational model, our simulations showed that cholinergic-facilitated depression is important for reversal learning. In the present study, we tested the model’s prediction by optogenetically inactivating cholinergic neurons in mice during a hippocampus-dependent spatial learning task with changing rewards. We found that reversal learning, but not initial place learning, was impaired, verifying our computational prediction that acetylcholine-modulated plasticity promotes the unlearning of old reward locations. Further, differences in neuromodulator concentrations in the model captured mouse-by-mouse performance variability in the optogenetic experiments. Our line of work sheds light on how neuromodulators enable the learning of new contingencies. Public Library of Science 2021-06-10 /pmc/articles/PMC8192019/ /pubmed/34111110 http://dx.doi.org/10.1371/journal.pcbi.1009017 Text en © 2021 Ang et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ang, Grace Wan Yu Tang, Clara S. Hay, Y. Audrey Zannone, Sara Paulsen, Ole Clopath, Claudia The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning |
title | The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning |
title_full | The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning |
title_fullStr | The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning |
title_full_unstemmed | The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning |
title_short | The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning |
title_sort | functional role of sequentially neuromodulated synaptic plasticity in behavioural learning |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192019/ https://www.ncbi.nlm.nih.gov/pubmed/34111110 http://dx.doi.org/10.1371/journal.pcbi.1009017 |
work_keys_str_mv | AT anggracewanyu thefunctionalroleofsequentiallyneuromodulatedsynapticplasticityinbehaviourallearning AT tangclaras thefunctionalroleofsequentiallyneuromodulatedsynapticplasticityinbehaviourallearning AT hayyaudrey thefunctionalroleofsequentiallyneuromodulatedsynapticplasticityinbehaviourallearning AT zannonesara thefunctionalroleofsequentiallyneuromodulatedsynapticplasticityinbehaviourallearning AT paulsenole thefunctionalroleofsequentiallyneuromodulatedsynapticplasticityinbehaviourallearning AT clopathclaudia thefunctionalroleofsequentiallyneuromodulatedsynapticplasticityinbehaviourallearning AT anggracewanyu functionalroleofsequentiallyneuromodulatedsynapticplasticityinbehaviourallearning AT tangclaras functionalroleofsequentiallyneuromodulatedsynapticplasticityinbehaviourallearning AT hayyaudrey functionalroleofsequentiallyneuromodulatedsynapticplasticityinbehaviourallearning AT zannonesara functionalroleofsequentiallyneuromodulatedsynapticplasticityinbehaviourallearning AT paulsenole functionalroleofsequentiallyneuromodulatedsynapticplasticityinbehaviourallearning AT clopathclaudia functionalroleofsequentiallyneuromodulatedsynapticplasticityinbehaviourallearning |