Cargando…
A Multipulse Radar Signal Recognition Approach via HRF-Net Deep Learning Models
In the field of electronic countermeasure, the recognition of radar signals is extremely important. This paper uses GNU Radio and Universal Software Radio Peripherals to generate 10 classes of close-to-real multipulse radar signals, namely, Barker, Chaotic, EQFM, Frank, FSK, LFM, LOFM, OFDM, P1, and...
Autores principales: | Li, Ji, Zhang, Huiqiang, Ou, Jianping, Wang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192198/ https://www.ncbi.nlm.nih.gov/pubmed/34188675 http://dx.doi.org/10.1155/2021/9955130 |
Ejemplares similares
-
A Radar Signal Recognition Approach via IIF-Net Deep Learning Models
por: Li, Ji, et al.
Publicado: (2020) -
Status of the multipulsing investigation
por: Fiander, D
Publicado: (1976) -
HRF Group Annual Report 1999
por: Linnecar, Trevor Paul R
Publicado: (2000) -
On the distinguishability of HRF models in fMRI
por: Rosa, Paulo N., et al.
Publicado: (2015) -
Radar Signal Modulation Recognition Based on Sep-ResNet
por: Mao, Yongjiang, et al.
Publicado: (2021)