Cargando…
A novel economic framework to assess the cost-effectiveness of bone-forming agents in the prevention of fractures in patients with osteoporosis
SUMMARY: A novel cost-effectiveness model framework was developed to incorporate the elevated fracture risk associated with a recent fracture and to allow sequential osteoporosis therapies to be evaluated. Treating patients with severe osteoporosis after a recent fracture with a bone-forming agent f...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192365/ https://www.ncbi.nlm.nih.gov/pubmed/33411005 http://dx.doi.org/10.1007/s00198-020-05765-7 |
Sumario: | SUMMARY: A novel cost-effectiveness model framework was developed to incorporate the elevated fracture risk associated with a recent fracture and to allow sequential osteoporosis therapies to be evaluated. Treating patients with severe osteoporosis after a recent fracture with a bone-forming agent followed by antiresorptive therapy can be cost-effective compared with antiresorptive therapy alone. Incorporating these novel technical attributes in economic evaluations can support appropriate policy and reimbursement decision-making. PURPOSE: To develop a cost-effectiveness model accommodating increased fracture risk after a recent fracture and treatment sequencing. METHODS: A micro-simulation cost-utility model was developed to accommodate both treatment sequencing and increased risk with recent fracture. The risk of fracture was estimated and simulated using the FRAX® algorithms combined with Swedish registry data on imminent fracture relative risk. In the base-case cost-effectiveness analysis, a sequential treatment starting with a bone-forming agent for 12 months followed by an antiresorptive agent for 48 months initiated immediately after a major osteoporotic fracture (MOF) in a 70-year-old woman with a T-score of 2.5 or less was compared to an antiresorptive treatment alone for 60 months. The model was populated with data relevant for a UK population reflecting a personal social service perspective. RESULTS: The cost per additional quality-adjusted life year (QALY) gained in the base-case setting was estimated at £34,584. Sensitivity analyses revealed the sequential treatment to be cost-saving compared with administering a bone-forming treatment alone. Without simulating an elevated fracture risk immediately after a recent fracture, the cost per QALY changed from £34,584 to £62,184. CONCLUSION: Incorporating imminent fracture risk in economic evaluations has a significant impact on the cost-effectiveness when evaluating fracture prevention treatments in patients with osteoporosis who sustained a recent fracture. Bone-forming treatment followed by antiresorptive therapy can be cost-effective compared to antiresorptive therapy alone depending on treatment acquisition costs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00198-020-05765-7. |
---|