Cargando…
Algebraic graph-assisted bidirectional transformers for molecular property prediction
The ability of molecular property prediction is of great significance to drug discovery, human health, and environmental protection. Despite considerable efforts, quantitative prediction of various molecular properties remains a challenge. Although some machine learning models, such as bidirectional...
Autores principales: | Chen, Dong, Gao, Kaifu, Nguyen, Duc Duy, Chen, Xin, Jiang, Yi, Wei, Guo-Wei, Pan, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192505/ https://www.ncbi.nlm.nih.gov/pubmed/34112777 http://dx.doi.org/10.1038/s41467-021-23720-w |
Ejemplares similares
-
Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning
por: Nguyen, Duc Duy, et al.
Publicado: (2020) -
Fundamentals of algebraic graph transformation
por: Ehrig, Hartmut, et al.
Publicado: (2006) -
Analysis and correctness of algebraic graph and model transformations
por: Golas, Ulrike
Publicado: (2011) -
Machine intelligence design of 2019-nCoV drugs
por: Gao, Kaifu, et al.
Publicado: (2020) -
Algebraic elements of graphs
por: Liu, Yanpei, et al.
Publicado: (2017)