Cargando…

Serum free culture for the expansion and study of type 2 innate lymphoid cells

Type 2 innate lymphoid cells (ILC2s) were discovered approximately ten years ago and their clinical relevance is gaining greater importance. However, their successful isolation from mammalian tissues and in vitro culture and expansion continues to pose challenges. This is partly due to their scarcit...

Descripción completa

Detalles Bibliográficos
Autores principales: de Lucía Finkel, Pablo, Sherwood, Christopher, Saranchova, Iryna, Xia, Wenjing, Munro, Lonna, Pfeifer, Cheryl G., Piret, James M., Jefferies, Wilfred A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192527/
https://www.ncbi.nlm.nih.gov/pubmed/34112824
http://dx.doi.org/10.1038/s41598-021-91500-z
Descripción
Sumario:Type 2 innate lymphoid cells (ILC2s) were discovered approximately ten years ago and their clinical relevance is gaining greater importance. However, their successful isolation from mammalian tissues and in vitro culture and expansion continues to pose challenges. This is partly due to their scarcity compared to other leukocyte populations, but also because our current knowledge of ILC2 biology is incomplete. This study is focused on ST2(+) IL-25R(lo) lung resident ILC2s and demonstrate for the first time a methodology allowing mouse type 2 innate lymphoid cells to be cultured, and their numbers expanded in serum-free medium supplemented with Interleukins IL-33, IL-2, IL-7 and TSLP. The procedures described methods to isolate ILC2s and support their growth for up to a week while maintaining their phenotype. During this time, they significantly expand from low to high cell concentrations. Furthermore, for the first time, sub-cultures of primary ILC2 purifications in larger 24- and 6-well plates were undertaken in order to compare their growth in other media. In culture, ILC2s had doubling times of 21 h, a growth rate of 0.032 h(−1) and could be sub-cultured in early or late phases of exponential growth. These studies form the basis for expanding ILC2 populations that will facilitate the study and potential applications of these rare cells under defined, serum-free conditions.