Cargando…
Microscopy deep learning predicts virus infections and reveals mechanics of lytic-infected cells
Imaging across scales reveals disease mechanisms in organisms, tissues, and cells. Yet, particular infection phenotypes, such as virus-induced cell lysis, have remained difficult to study. Here, we developed imaging modalities and deep learning procedures to identify herpesvirus and adenovirus (AdV)...
Autores principales: | Andriasyan, Vardan, Yakimovich, Artur, Petkidis, Anthony, Georgi, Fanny, Witte, Robert, Puntener, Daniel, Greber, Urs F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192562/ https://www.ncbi.nlm.nih.gov/pubmed/34151222 http://dx.doi.org/10.1016/j.isci.2021.102543 |
Ejemplares similares
-
Concepts in Light Microscopy of Viruses
por: Witte, Robert, et al.
Publicado: (2018) -
Label-Free Digital Holo-tomographic Microscopy Reveals Virus-Induced Cytopathic Effects in Live Cells
por: Yakimovich, Artur, et al.
Publicado: (2018) -
Label-free microscopy for virus infections
por: Petkidis, Anthony, et al.
Publicado: (2023) -
Machine learning for cross-scale microscopy of viruses
por: Petkidis, Anthony, et al.
Publicado: (2023) -
High-content, arrayed compound screens with rhinovirus, influenza A virus and herpes simplex virus infections
por: Olszewski, Dominik, et al.
Publicado: (2022)