Cargando…
A comparative study of multiple instance learning methods for cancer detection using T-cell receptor sequences
As a branch of machine learning, multiple instance learning (MIL) learns from a collection of labeled bags, each containing a set of instances. The learning process is weakly supervised due to ambiguous instance labels. Since its emergence, MIL has been applied to solve various problems including co...
Autores principales: | Xiong, Danyi, Zhang, Ze, Wang, Tao, Wang, Xinlei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192570/ https://www.ncbi.nlm.nih.gov/pubmed/34141144 http://dx.doi.org/10.1016/j.csbj.2021.05.038 |
Ejemplares similares
-
Multiple instance neural networks based on sparse attention for cancer detection using T-cell receptor sequences
por: Kim, Younghoon, et al.
Publicado: (2022) -
Mapping the Functional Landscape of T Cell Receptor Repertoire by Single T Cell Transcriptomics
por: Zhang, Ze, et al.
Publicado: (2021) -
A Novel Multiple Instance Learning Method Based on Extreme Learning Machine
por: Wang, Jie, et al.
Publicado: (2015) -
Drug activity prediction using multiple-instance learning via joint instance and feature selection
por: Zhao, Zhendong, et al.
Publicado: (2013) -
Detection of m6A from direct RNA sequencing using a multiple instance learning framework
por: Hendra, Christopher, et al.
Publicado: (2022)