Cargando…

In-situ remediation of nitrogen and phosphorus of beverage industry by potential strains Bacillus sp. (BK1) and Aspergillus sp. (BK2)

The bioremediation of beverage (treated and untreated) effluent was investigated in the current study by using the potential strains of Bacillus sp. (BK1) and Aspergillus sp. (BK2). Effluent was collected from the beverage industry (initial concentration of nitrogen were 3200 ± 0.5 mg/L and 4400 ± 0...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhambri, Anne, Karn, Santosh Kumar, Singh, R. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192750/
https://www.ncbi.nlm.nih.gov/pubmed/34112820
http://dx.doi.org/10.1038/s41598-021-91539-y
_version_ 1783706101265465344
author Bhambri, Anne
Karn, Santosh Kumar
Singh, R. K.
author_facet Bhambri, Anne
Karn, Santosh Kumar
Singh, R. K.
author_sort Bhambri, Anne
collection PubMed
description The bioremediation of beverage (treated and untreated) effluent was investigated in the current study by using the potential strains of Bacillus sp. (BK1) and Aspergillus sp. (BK2). Effluent was collected from the beverage industry (initial concentration of nitrogen were 3200 ± 0.5 mg/L and 4400 ± 0.6 mg/L whereas phosphorus were 4400 ± 2 mg/L and 2600 ± 1 mg/L in treated and untreated effluent correspondingly). Further, the BK1 and BK2 exhibited high removal competence after 1 week of incubation; BK1 removed phosphorus 99.95 ± 0.7% and BK2 95.69 ± 1% in treated effluent while nitrogen removed about 99.90 ± 0.4% by BK1 and 81.25 ± 0.8% by BK2 (initial concentration of phosphorus 4400 ± 2 mg/L and nitrogen 3200 ± 0.5 mg/L). Next, in the untreated effluent BK1 removed 99.81 ± 1% and BK2 99.85 ± 0.8% of phosphorus while removed nitrogen 99.93 ± 0.5% by BK1 and 99.95 ± 1.2% by BK2 correspondingly, (initial concentration of phosphorus 2600 ± 1 mg/L and nitrogen 4400 ± 0.6 mg/L). The physiochemical composition of sample such as pH, total carbohydrates, total proteins, total solids of treated and untreated effluent were also analysed before and after treatment of both the samples. BK1 and BK2 increased the pH by 8.94 ± 0.3 and 9.5 ± 0.4 correspondingly in treated effluent whereas 6.34 ± 0.5 and 7.5 ± 0.2 correspondingly in untreated effluent (initial pH of treated and untreated effluent 7.07 ± 0.8 and 4.85 ± 0.3 correspondingly). Total Carbohydrates removed about 17,440 ± 4.6 mg/L and 10,680 ± 3.2 mg/L by BK1 and BK2 correspondingly in treated effluent whereas 18,050 ± 3.5 mg/L and 18,340 ± 2.3 mg/L correspondingly in untreated effluent (initial concentration of treated and untreated effluent 25,780 ± 1.6 mg/L and 35,000 ± 1.5 mg/L correspondingly) while BK1 and BK2 removed total proteins by 30.336 ± 4.6 mg/L and 40.417 ± 2.3 mg/L correspondingly in treated effluent whereas 18.929 ± 1.2 mg/L and 17.526 ± 0.8 mg/L correspondingly in untreated effluent (initial concentration of treated and untreated effluent 49.225 ± 1.5 mg/L and 20.565 ± 1 mg/L correspondingly). Next, total solids removed by BK1 and BK2 2.5 ± 0.3 mg/L and 1.6 ± 0.6 mg/L correspondingly in treated effluent whereas 5.5 ± 0.8 mg/L and 4.6 ± 0.6 mg/L in untreated effluent (initial concentration of treated and untreated effluent 5.6 ± 1.5 mg/L and 9.48 ± 1.2 mg/L correspondingly). Both the strains BK1 and BK2 are highly efficient in the nitrogen and phosphorus removal therefore this strain may be applied for the potential remediation.
format Online
Article
Text
id pubmed-8192750
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81927502021-06-14 In-situ remediation of nitrogen and phosphorus of beverage industry by potential strains Bacillus sp. (BK1) and Aspergillus sp. (BK2) Bhambri, Anne Karn, Santosh Kumar Singh, R. K. Sci Rep Article The bioremediation of beverage (treated and untreated) effluent was investigated in the current study by using the potential strains of Bacillus sp. (BK1) and Aspergillus sp. (BK2). Effluent was collected from the beverage industry (initial concentration of nitrogen were 3200 ± 0.5 mg/L and 4400 ± 0.6 mg/L whereas phosphorus were 4400 ± 2 mg/L and 2600 ± 1 mg/L in treated and untreated effluent correspondingly). Further, the BK1 and BK2 exhibited high removal competence after 1 week of incubation; BK1 removed phosphorus 99.95 ± 0.7% and BK2 95.69 ± 1% in treated effluent while nitrogen removed about 99.90 ± 0.4% by BK1 and 81.25 ± 0.8% by BK2 (initial concentration of phosphorus 4400 ± 2 mg/L and nitrogen 3200 ± 0.5 mg/L). Next, in the untreated effluent BK1 removed 99.81 ± 1% and BK2 99.85 ± 0.8% of phosphorus while removed nitrogen 99.93 ± 0.5% by BK1 and 99.95 ± 1.2% by BK2 correspondingly, (initial concentration of phosphorus 2600 ± 1 mg/L and nitrogen 4400 ± 0.6 mg/L). The physiochemical composition of sample such as pH, total carbohydrates, total proteins, total solids of treated and untreated effluent were also analysed before and after treatment of both the samples. BK1 and BK2 increased the pH by 8.94 ± 0.3 and 9.5 ± 0.4 correspondingly in treated effluent whereas 6.34 ± 0.5 and 7.5 ± 0.2 correspondingly in untreated effluent (initial pH of treated and untreated effluent 7.07 ± 0.8 and 4.85 ± 0.3 correspondingly). Total Carbohydrates removed about 17,440 ± 4.6 mg/L and 10,680 ± 3.2 mg/L by BK1 and BK2 correspondingly in treated effluent whereas 18,050 ± 3.5 mg/L and 18,340 ± 2.3 mg/L correspondingly in untreated effluent (initial concentration of treated and untreated effluent 25,780 ± 1.6 mg/L and 35,000 ± 1.5 mg/L correspondingly) while BK1 and BK2 removed total proteins by 30.336 ± 4.6 mg/L and 40.417 ± 2.3 mg/L correspondingly in treated effluent whereas 18.929 ± 1.2 mg/L and 17.526 ± 0.8 mg/L correspondingly in untreated effluent (initial concentration of treated and untreated effluent 49.225 ± 1.5 mg/L and 20.565 ± 1 mg/L correspondingly). Next, total solids removed by BK1 and BK2 2.5 ± 0.3 mg/L and 1.6 ± 0.6 mg/L correspondingly in treated effluent whereas 5.5 ± 0.8 mg/L and 4.6 ± 0.6 mg/L in untreated effluent (initial concentration of treated and untreated effluent 5.6 ± 1.5 mg/L and 9.48 ± 1.2 mg/L correspondingly). Both the strains BK1 and BK2 are highly efficient in the nitrogen and phosphorus removal therefore this strain may be applied for the potential remediation. Nature Publishing Group UK 2021-06-10 /pmc/articles/PMC8192750/ /pubmed/34112820 http://dx.doi.org/10.1038/s41598-021-91539-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Bhambri, Anne
Karn, Santosh Kumar
Singh, R. K.
In-situ remediation of nitrogen and phosphorus of beverage industry by potential strains Bacillus sp. (BK1) and Aspergillus sp. (BK2)
title In-situ remediation of nitrogen and phosphorus of beverage industry by potential strains Bacillus sp. (BK1) and Aspergillus sp. (BK2)
title_full In-situ remediation of nitrogen and phosphorus of beverage industry by potential strains Bacillus sp. (BK1) and Aspergillus sp. (BK2)
title_fullStr In-situ remediation of nitrogen and phosphorus of beverage industry by potential strains Bacillus sp. (BK1) and Aspergillus sp. (BK2)
title_full_unstemmed In-situ remediation of nitrogen and phosphorus of beverage industry by potential strains Bacillus sp. (BK1) and Aspergillus sp. (BK2)
title_short In-situ remediation of nitrogen and phosphorus of beverage industry by potential strains Bacillus sp. (BK1) and Aspergillus sp. (BK2)
title_sort in-situ remediation of nitrogen and phosphorus of beverage industry by potential strains bacillus sp. (bk1) and aspergillus sp. (bk2)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192750/
https://www.ncbi.nlm.nih.gov/pubmed/34112820
http://dx.doi.org/10.1038/s41598-021-91539-y
work_keys_str_mv AT bhambrianne insituremediationofnitrogenandphosphorusofbeverageindustrybypotentialstrainsbacillusspbk1andaspergillusspbk2
AT karnsantoshkumar insituremediationofnitrogenandphosphorusofbeverageindustrybypotentialstrainsbacillusspbk1andaspergillusspbk2
AT singhrk insituremediationofnitrogenandphosphorusofbeverageindustrybypotentialstrainsbacillusspbk1andaspergillusspbk2