Cargando…

Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity

In systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains (LC) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to avoid permanent organ damage, but delayed diagnosis is common because symptoms usually appear only after strong...

Descripción completa

Detalles Bibliográficos
Autores principales: Garofalo, Maura, Piccoli, Luca, Romeo, Margherita, Barzago, Maria Monica, Ravasio, Sara, Foglierini, Mathilde, Matkovic, Milos, Sgrignani, Jacopo, De Gasparo, Raoul, Prunotto, Marco, Varani, Luca, Diomede, Luisa, Michielin, Olivier, Lanzavecchia, Antonio, Cavalli, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192768/
https://www.ncbi.nlm.nih.gov/pubmed/34112780
http://dx.doi.org/10.1038/s41467-021-23880-9
_version_ 1783706105663193088
author Garofalo, Maura
Piccoli, Luca
Romeo, Margherita
Barzago, Maria Monica
Ravasio, Sara
Foglierini, Mathilde
Matkovic, Milos
Sgrignani, Jacopo
De Gasparo, Raoul
Prunotto, Marco
Varani, Luca
Diomede, Luisa
Michielin, Olivier
Lanzavecchia, Antonio
Cavalli, Andrea
author_facet Garofalo, Maura
Piccoli, Luca
Romeo, Margherita
Barzago, Maria Monica
Ravasio, Sara
Foglierini, Mathilde
Matkovic, Milos
Sgrignani, Jacopo
De Gasparo, Raoul
Prunotto, Marco
Varani, Luca
Diomede, Luisa
Michielin, Olivier
Lanzavecchia, Antonio
Cavalli, Andrea
author_sort Garofalo, Maura
collection PubMed
description In systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains (LC) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to avoid permanent organ damage, but delayed diagnosis is common because symptoms usually appear only after strong organ involvement. Here we present LICTOR, a machine learning approach predicting LC toxicity in AL, based on the distribution of somatic mutations acquired during clonal selection. LICTOR achieves a specificity and a sensitivity of 0.82 and 0.76, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.87. Tested on an independent set of 12 LCs sequences with known clinical phenotypes, LICTOR achieves a prediction accuracy of 83%. Furthermore, we are able to abolish the toxic phenotype of an LC by in silico reverting two germline-specific somatic mutations identified by LICTOR, and by experimentally assessing the loss of in vivo toxicity in a Caenorhabditis elegans model. Therefore, LICTOR represents a promising strategy for AL diagnosis and reducing high mortality rates in AL.
format Online
Article
Text
id pubmed-8192768
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81927682021-06-17 Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity Garofalo, Maura Piccoli, Luca Romeo, Margherita Barzago, Maria Monica Ravasio, Sara Foglierini, Mathilde Matkovic, Milos Sgrignani, Jacopo De Gasparo, Raoul Prunotto, Marco Varani, Luca Diomede, Luisa Michielin, Olivier Lanzavecchia, Antonio Cavalli, Andrea Nat Commun Article In systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains (LC) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to avoid permanent organ damage, but delayed diagnosis is common because symptoms usually appear only after strong organ involvement. Here we present LICTOR, a machine learning approach predicting LC toxicity in AL, based on the distribution of somatic mutations acquired during clonal selection. LICTOR achieves a specificity and a sensitivity of 0.82 and 0.76, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.87. Tested on an independent set of 12 LCs sequences with known clinical phenotypes, LICTOR achieves a prediction accuracy of 83%. Furthermore, we are able to abolish the toxic phenotype of an LC by in silico reverting two germline-specific somatic mutations identified by LICTOR, and by experimentally assessing the loss of in vivo toxicity in a Caenorhabditis elegans model. Therefore, LICTOR represents a promising strategy for AL diagnosis and reducing high mortality rates in AL. Nature Publishing Group UK 2021-06-10 /pmc/articles/PMC8192768/ /pubmed/34112780 http://dx.doi.org/10.1038/s41467-021-23880-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Garofalo, Maura
Piccoli, Luca
Romeo, Margherita
Barzago, Maria Monica
Ravasio, Sara
Foglierini, Mathilde
Matkovic, Milos
Sgrignani, Jacopo
De Gasparo, Raoul
Prunotto, Marco
Varani, Luca
Diomede, Luisa
Michielin, Olivier
Lanzavecchia, Antonio
Cavalli, Andrea
Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
title Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
title_full Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
title_fullStr Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
title_full_unstemmed Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
title_short Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
title_sort machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192768/
https://www.ncbi.nlm.nih.gov/pubmed/34112780
http://dx.doi.org/10.1038/s41467-021-23880-9
work_keys_str_mv AT garofalomaura machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT piccoliluca machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT romeomargherita machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT barzagomariamonica machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT ravasiosara machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT foglierinimathilde machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT matkovicmilos machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT sgrignanijacopo machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT degasparoraoul machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT prunottomarco machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT varaniluca machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT diomedeluisa machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT michielinolivier machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT lanzavecchiaantonio machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT cavalliandrea machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity