Cargando…
Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
In systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains (LC) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to avoid permanent organ damage, but delayed diagnosis is common because symptoms usually appear only after strong...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192768/ https://www.ncbi.nlm.nih.gov/pubmed/34112780 http://dx.doi.org/10.1038/s41467-021-23880-9 |
_version_ | 1783706105663193088 |
---|---|
author | Garofalo, Maura Piccoli, Luca Romeo, Margherita Barzago, Maria Monica Ravasio, Sara Foglierini, Mathilde Matkovic, Milos Sgrignani, Jacopo De Gasparo, Raoul Prunotto, Marco Varani, Luca Diomede, Luisa Michielin, Olivier Lanzavecchia, Antonio Cavalli, Andrea |
author_facet | Garofalo, Maura Piccoli, Luca Romeo, Margherita Barzago, Maria Monica Ravasio, Sara Foglierini, Mathilde Matkovic, Milos Sgrignani, Jacopo De Gasparo, Raoul Prunotto, Marco Varani, Luca Diomede, Luisa Michielin, Olivier Lanzavecchia, Antonio Cavalli, Andrea |
author_sort | Garofalo, Maura |
collection | PubMed |
description | In systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains (LC) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to avoid permanent organ damage, but delayed diagnosis is common because symptoms usually appear only after strong organ involvement. Here we present LICTOR, a machine learning approach predicting LC toxicity in AL, based on the distribution of somatic mutations acquired during clonal selection. LICTOR achieves a specificity and a sensitivity of 0.82 and 0.76, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.87. Tested on an independent set of 12 LCs sequences with known clinical phenotypes, LICTOR achieves a prediction accuracy of 83%. Furthermore, we are able to abolish the toxic phenotype of an LC by in silico reverting two germline-specific somatic mutations identified by LICTOR, and by experimentally assessing the loss of in vivo toxicity in a Caenorhabditis elegans model. Therefore, LICTOR represents a promising strategy for AL diagnosis and reducing high mortality rates in AL. |
format | Online Article Text |
id | pubmed-8192768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-81927682021-06-17 Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity Garofalo, Maura Piccoli, Luca Romeo, Margherita Barzago, Maria Monica Ravasio, Sara Foglierini, Mathilde Matkovic, Milos Sgrignani, Jacopo De Gasparo, Raoul Prunotto, Marco Varani, Luca Diomede, Luisa Michielin, Olivier Lanzavecchia, Antonio Cavalli, Andrea Nat Commun Article In systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains (LC) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to avoid permanent organ damage, but delayed diagnosis is common because symptoms usually appear only after strong organ involvement. Here we present LICTOR, a machine learning approach predicting LC toxicity in AL, based on the distribution of somatic mutations acquired during clonal selection. LICTOR achieves a specificity and a sensitivity of 0.82 and 0.76, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.87. Tested on an independent set of 12 LCs sequences with known clinical phenotypes, LICTOR achieves a prediction accuracy of 83%. Furthermore, we are able to abolish the toxic phenotype of an LC by in silico reverting two germline-specific somatic mutations identified by LICTOR, and by experimentally assessing the loss of in vivo toxicity in a Caenorhabditis elegans model. Therefore, LICTOR represents a promising strategy for AL diagnosis and reducing high mortality rates in AL. Nature Publishing Group UK 2021-06-10 /pmc/articles/PMC8192768/ /pubmed/34112780 http://dx.doi.org/10.1038/s41467-021-23880-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Garofalo, Maura Piccoli, Luca Romeo, Margherita Barzago, Maria Monica Ravasio, Sara Foglierini, Mathilde Matkovic, Milos Sgrignani, Jacopo De Gasparo, Raoul Prunotto, Marco Varani, Luca Diomede, Luisa Michielin, Olivier Lanzavecchia, Antonio Cavalli, Andrea Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
title | Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
title_full | Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
title_fullStr | Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
title_full_unstemmed | Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
title_short | Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
title_sort | machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192768/ https://www.ncbi.nlm.nih.gov/pubmed/34112780 http://dx.doi.org/10.1038/s41467-021-23880-9 |
work_keys_str_mv | AT garofalomaura machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT piccoliluca machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT romeomargherita machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT barzagomariamonica machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT ravasiosara machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT foglierinimathilde machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT matkovicmilos machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT sgrignanijacopo machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT degasparoraoul machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT prunottomarco machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT varaniluca machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT diomedeluisa machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT michielinolivier machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT lanzavecchiaantonio machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT cavalliandrea machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity |