Cargando…

Label-free high-throughput screening assay for the identification of norepinephrine transporter (NET/SLC6A2) inhibitors

The human norepinephrine transporter (NET) is an established drug target for a wide range of psychiatric disorders. Conventional methods that are used to functionally characterize NET inhibitors are based on the use of radiolabeled or fluorescent substrates. These methods are highly informative, but...

Descripción completa

Detalles Bibliográficos
Autores principales: Sijben, Hubert J., van Oostveen, Wieke M., Hartog, Peter B. R., Stucchi, Laura, Rossignoli, Andrea, Maresca, Giovanna, Scarabottolo, Lia, IJzerman, Adriaan P., Heitman, Laura H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192900/
https://www.ncbi.nlm.nih.gov/pubmed/34112854
http://dx.doi.org/10.1038/s41598-021-91700-7
Descripción
Sumario:The human norepinephrine transporter (NET) is an established drug target for a wide range of psychiatric disorders. Conventional methods that are used to functionally characterize NET inhibitors are based on the use of radiolabeled or fluorescent substrates. These methods are highly informative, but pose limitations to either high-throughput screening (HTS) adaptation or physiologically accurate representation of the endogenous uptake events. Recently, we developed a label-free functional assay based on the activation of G protein-coupled receptors by a transported substrate, termed the TRACT assay. In this study, the TRACT assay technology was applied to NET expressed in a doxycycline-inducible HEK 293 JumpIn cell line. Three endogenous substrates of NET—norepinephrine (NE), dopamine (DA) and epinephrine (EP)—were compared in the characterization of the reference NET inhibitor nisoxetine. The resulting assay, using NE as a substrate, was validated in a manual HTS set-up with a Z′ = 0.55. The inhibitory potencies of several reported NET inhibitors from the TRACT assay showed positive correlation with those from an established fluorescent substrate uptake assay. These findings demonstrate the suitability of the TRACT assay for HTS characterization and screening of NET inhibitors and provide a basis for investigation of other solute carrier transporters with label-free biosensors.