Cargando…
Evaluating machine learning methodologies for identification of cancer driver genes
Cancer is driven by distinctive sorts of changes and basic variations in genes. Recognizing cancer driver genes is basic for accurate oncological analysis. Numerous methodologies to distinguish and identify drivers presently exist, but efficient tools to combine and optimize them on huge datasets ar...
Autores principales: | Malebary, Sharaf J., Khan, Yaser Daanial |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192921/ https://www.ncbi.nlm.nih.gov/pubmed/34112883 http://dx.doi.org/10.1038/s41598-021-91656-8 |
Ejemplares similares
-
iCrotoK-PseAAC: Identify lysine crotonylation sites by blending position relative statistical features according to the Chou’s 5-step rule
por: Malebary, Sharaf Jameel, et al.
Publicado: (2019) -
Identification of stress response proteins through fusion of machine learning models and statistical paradigms
por: Alzahrani, Ebraheem, et al.
Publicado: (2021) -
Evaluation of deep learning techniques for identification of
sarcoma-causing carcinogenic mutations
por: Shah, Asghar Ali, et al.
Publicado: (2022) -
Machine learning techniques for identification of carcinogenic mutations, which cause breast adenocarcinoma
por: Shah, Asghar Ali, et al.
Publicado: (2022) -
A machine learning technique for identifying DNA enhancer regions utilizing CIS-regulatory element patterns
por: Butt, Ahmad Hassan, et al.
Publicado: (2022)