Cargando…
Explainable Deep Learning for Personalized Age Prediction With Brain Morphology
Predicting brain age has become one of the most attractive challenges in computational neuroscience due to the role of the predicted age as an effective biomarker for different brain diseases and conditions. A great variety of machine learning (ML) approaches and deep learning (DL) techniques have b...
Autores principales: | Lombardi, Angela, Diacono, Domenico, Amoroso, Nicola, Monaco, Alfonso, Tavares, João Manuel R. S., Bellotti, Roberto, Tangaro, Sabina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192966/ https://www.ncbi.nlm.nih.gov/pubmed/34122000 http://dx.doi.org/10.3389/fnins.2021.674055 |
Ejemplares similares
-
Extensive Evaluation of Morphological Statistical Harmonization for Brain Age Prediction
por: Lombardi, Angela, et al.
Publicado: (2020) -
Deep Learning and Multiplex Networks for Accurate Modeling of Brain Age
por: Amoroso, Nicola, et al.
Publicado: (2019) -
Brain Age Prediction With Morphological Features Using Deep Neural Networks: Results From Predictive Analytic Competition 2019
por: Lombardi, Angela, et al.
Publicado: (2021) -
Communicability Characterization of Structural DWI Subcortical Networks in Alzheimer’s Disease
por: Lella, Eufemia, et al.
Publicado: (2019) -
A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of Mild Cognitive Impairment and Alzheimer’s Disease
por: Lombardi, Angela, et al.
Publicado: (2022)