Cargando…
Machine Learning-Based Modeling of Spatio-Temporally Varying Responses of Rainfed Corn Yield to Climate, Soil, and Management in the U.S. Corn Belt
Better understanding the variabilities in crop yield and production is critical to assessing the vulnerability and resilience of food production systems. Both environmental (climatic and edaphic) conditions and management factors affect the variabilities of crop yield. In this study, we conducted a...
Autores principales: | Xu, Tianfang, Guan, Kaiyu, Peng, Bin, Wei, Shiqi, Zhao, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192978/ https://www.ncbi.nlm.nih.gov/pubmed/34124647 http://dx.doi.org/10.3389/frai.2021.647999 |
Ejemplares similares
-
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems
por: Zhao, Wei, et al.
Publicado: (2023) -
Instance Segmentation to Estimate Consumption of Corn Ears by Wild Animals for GMO Preference Tests
por: Adke, Shrinidhi, et al.
Publicado: (2021) -
Adaptation in U.S. Corn Belt increases resistance to soil carbon loss with climate change
por: Zhang, Yao, et al.
Publicado: (2020) -
Detection of protein, starch, oil, and moisture content of corn kernels using one-dimensional convolutional autoencoder and near-infrared spectroscopy
por: Cataltas, Ozcan, et al.
Publicado: (2023) -
Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt
por: Wade, Jordon, et al.
Publicado: (2020)