Cargando…

All-Optical Electrophysiology in hiPSC-Derived Neurons With Synthetic Voltage Sensors

Voltage imaging and “all-optical electrophysiology” in human induced pluripotent stem cell (hiPSC)-derived neurons have opened unprecedented opportunities for high-throughput phenotyping of activity in neurons possessing unique genetic backgrounds of individual patients. While prior all-optical elec...

Descripción completa

Detalles Bibliográficos
Autores principales: Puppo, Francesca, Sadegh, Sanaz, Trujillo, Cleber A., Thunemann, Martin, Campbell, Evan P., Vandenberghe, Matthieu, Shan, Xiwei, Akkouh, Ibrahim A., Miller, Evan W., Bloodgood, Brenda L., Silva, Gabriel A., Dale, Anders M., Einevoll, Gaute T., Djurovic, Srdjan, Andreassen, Ole A., Muotri, Alysson R., Devor, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193062/
https://www.ncbi.nlm.nih.gov/pubmed/34122014
http://dx.doi.org/10.3389/fncel.2021.671549
Descripción
Sumario:Voltage imaging and “all-optical electrophysiology” in human induced pluripotent stem cell (hiPSC)-derived neurons have opened unprecedented opportunities for high-throughput phenotyping of activity in neurons possessing unique genetic backgrounds of individual patients. While prior all-optical electrophysiology studies relied on genetically encoded voltage indicators, here, we demonstrate an alternative protocol using a synthetic voltage sensor and genetically encoded optogenetic actuator that generate robust and reproducible results. We demonstrate the functionality of this method by measuring spontaneous and evoked activity in three independent hiPSC-derived neuronal cell lines with distinct genetic backgrounds.