Cargando…

Refactoring of a synthetic raspberry ketone pathway with EcoFlex

BACKGROUND:  A key focus of synthetic biology is to develop microbial or cell-free based biobased routes to value-added chemicals such as fragrances. Originally, we developed the EcoFlex system, a Golden Gate toolkit, to study genes/pathways flexibly using Escherichia coli heterologous expression. I...

Descripción completa

Detalles Bibliográficos
Autores principales: Moore, Simon J., Hleba, Yonek B., Bischoff, Sarah, Bell, David, Polizzi, Karen M., Freemont, Paul S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193874/
https://www.ncbi.nlm.nih.gov/pubmed/34112158
http://dx.doi.org/10.1186/s12934-021-01604-4
Descripción
Sumario:BACKGROUND:  A key focus of synthetic biology is to develop microbial or cell-free based biobased routes to value-added chemicals such as fragrances. Originally, we developed the EcoFlex system, a Golden Gate toolkit, to study genes/pathways flexibly using Escherichia coli heterologous expression. In this current work, we sought to use EcoFlex to optimise a synthetic raspberry ketone biosynthetic pathway. Raspberry ketone is a high-value (~ £20,000 kg(−1)) fine chemical farmed from raspberry (Rubeus rubrum) fruit. RESULTS:  By applying a synthetic biology led design-build-test-learn cycle approach, we refactor the raspberry ketone pathway from a low level of productivity (0.2 mg/L), to achieve a 65-fold (12.9 mg/L) improvement in production. We perform this optimisation at the prototype level (using microtiter plate cultures) with E. coli DH10β, as a routine cloning host. The use of E. coli DH10β facilitates the Golden Gate cloning process for the screening of combinatorial libraries. In addition, we also newly establish a novel colour-based phenotypic screen to identify productive clones quickly from solid/liquid culture. CONCLUSIONS:  Our findings provide a stable raspberry ketone pathway that relies upon a natural feedstock (L-tyrosine) and uses only constitutive promoters to control gene expression. In conclusion we demonstrate the capability of EcoFlex for fine-tuning a model fine chemical pathway and provide a range of newly characterised promoter tools gene expression in E. coli. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12934-021-01604-4.