Cargando…
Classification-Biased Apparent Brain Age for the Prediction of Alzheimer's Disease
Machine Learning methods are often adopted to infer useful biomarkers for the early diagnosis of many neurodegenerative diseases and, in general, of neuroanatomical ageing. Some of these methods estimate the subject age from morphological brain data, which is then indicated as “brain age”. The diffe...
Autores principales: | Varzandian, Ali, Razo, Miguel Angel Sanchez, Sanders, Michael Richard, Atmakuru, Akhila, Di Fatta, Giuseppe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8193935/ https://www.ncbi.nlm.nih.gov/pubmed/34121998 http://dx.doi.org/10.3389/fnins.2021.673120 |
Ejemplares similares
-
External Validity of Randomized Controlled Trials on Alzheimer’s Disease: The Biases of Frailty and Biological Aging
por: Canevelli, Marco, et al.
Publicado: (2017) -
Effects of Alzheimer’s Disease on Visual Target Detection: A “Peripheral Bias”
por: Vallejo, Vanessa, et al.
Publicado: (2016) -
Classification of Alzheimer’s Disease Based on Deep Learning of Brain Structural and Metabolic Data
por: Wang, Huiquan, et al.
Publicado: (2022) -
Wnt Signaling Deregulation in the Aging and Alzheimer’s Brain
por: Palomer, Ernest, et al.
Publicado: (2019) -
Cadmium, an Environmental Contaminant, Exacerbates Alzheimer’s Pathology in the Aged Mice’s Brain
por: Ali, Tahir, et al.
Publicado: (2021)