Cargando…
Novel deep learning-based transcriptome data analysis for drug-drug interaction prediction with an application in diabetes
BACKGROUND: Drug-drug interaction (DDI) is a serious public health issue. The L1000 database of the LINCS project has collected millions of genome-wide expressions induced by 20,000 small molecular compounds on 72 cell lines. Whether this unified and comprehensive transcriptome data resource can be...
Autores principales: | Luo, Qichao, Mo, Shenglong, Xue, Yunfei, Zhang, Xiangzhou, Gu, Yuliang, Wu, Lijuan, Zhang, Jia, Sun, Linyan, Liu, Mei, Hu, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8194123/ https://www.ncbi.nlm.nih.gov/pubmed/34116627 http://dx.doi.org/10.1186/s12859-021-04241-1 |
Ejemplares similares
-
Protein–ligand binding affinity prediction with edge awareness and supervised attention
por: Gu, Yuliang, et al.
Publicado: (2022) -
Deep learning-based transcriptome data classification for drug-target interaction prediction
por: Xie, Lingwei, et al.
Publicado: (2018) -
A machine learning framework for predicting drug–drug interactions
por: Mei, Suyu, et al.
Publicado: (2021) -
A Transfer Learning Approach to Correct the Temporal Performance Drift of Clinical Prediction Models: Retrospective Cohort Study
por: Zhang, Xiangzhou, et al.
Publicado: (2022) -
Identifying potential drug-target interactions based on ensemble deep learning
por: Zhou, Liqian, et al.
Publicado: (2023)