Cargando…
Identification of a tumor microenvironment-related seven-gene signature for predicting prognosis in bladder cancer
BACKGROUND: Accumulating evidences demonstrated tumor microenvironment (TME) of bladder cancer (BLCA) may play a pivotal role in modulating tumorigenesis, progression, and alteration of biological features. Currently we aimed to establish a prognostic model based on TME-related gene expression for g...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8194149/ https://www.ncbi.nlm.nih.gov/pubmed/34112144 http://dx.doi.org/10.1186/s12885-021-08447-7 |
Sumario: | BACKGROUND: Accumulating evidences demonstrated tumor microenvironment (TME) of bladder cancer (BLCA) may play a pivotal role in modulating tumorigenesis, progression, and alteration of biological features. Currently we aimed to establish a prognostic model based on TME-related gene expression for guiding clinical management of BLCA. METHODS: We employed ESTIMATE algorithm to evaluate TME cell infiltration in BLCA. The RNA-Seq data from The Cancer Genome Atlas (TCGA) database was used to screen out differentially expressed genes (DEGs). Underlying relationship between co-expression modules and TME was investigated via Weighted gene co-expression network analysis (WGCNA). COX regression and the least absolute shrinkage and selection operator (LASSO) analysis were applied for screening prognostic hub gene and establishing a risk predictive model. BLCA specimens and adjacent tissues from patients were obtained from patients. Bladder cancer (T24, EJ-m3) and bladder uroepithelial cell line (SVHUC1) were used for genes validation. qRT-PCR was employed to validate genes mRNA level in tissues and cell lines. RESULTS: 365 BLCA samples and 19 adjacent normal samples were selected for identifying DEGs. 2141 DEGs were identified and used to construct co-expression network. Four modules (magenta, brown, yellow, purple) were regarded as TME regulatory modules through WGCNA and GO analysis. Furthermore, seven hub genes (ACAP1, ADAMTS9, TAP1, IFIT3, FBN1, FSTL1, COL6A2) were screened out to establish a risk predictive model via COX and LASSO regression. Survival analysis and ROC curve analysis indicated our predictive model had good performance on evaluating patients prognosis in different subgroup of BLCA. qRT-PCR result showed upregulation of ACAP1, IFIT3, TAP1 and downregulation of ADAMTS9, COL6A2, FSTL1,FBN1 in BLCA specimens and cell lines. CONCLUSIONS: Our study firstly integrated multiple TME-related genes to set up a risk predictive model. This model could accurately predict BLCA progression and prognosis, which offers clinical implication for risk stratification, immunotherapy drug screen and therapeutic decision. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-021-08447-7. |
---|