Cargando…
An Interpretable Machine Learning Method for the Detection of Schizophrenia Using EEG Signals
In this work we propose a machine learning (ML) method to aid in the diagnosis of schizophrenia using electroencephalograms (EEGs) as input data. The computational algorithm not only yields a proposal of diagnostic but, even more importantly, it provides additional information that admits clinical i...
Autores principales: | Vázquez, Manuel A., Maghsoudi, Arash, Mariño, Inés P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8194273/ https://www.ncbi.nlm.nih.gov/pubmed/34122021 http://dx.doi.org/10.3389/fnsys.2021.652662 |
Ejemplares similares
-
Hand Motor Imagery Classification Using Effective Connectivity and Hierarchical Machine Learning in EEG Signals
por: Maghsoudi, Arash, et al.
Publicado: (2022) -
Machine Learning Approaches for MDD Detection and Emotion Decoding Using EEG Signals
por: Duan, Lijuan, et al.
Publicado: (2020) -
Automatic Diagnosis of Schizophrenia in EEG Signals Using CNN-LSTM Models
por: Shoeibi, Afshin, et al.
Publicado: (2021) -
Predicting Age From Brain EEG Signals—A Machine Learning Approach
por: Al Zoubi, Obada, et al.
Publicado: (2018) -
Deep extreme learning machine with knowledge augmentation for EEG seizure signal recognition
por: Zhang, Xiongtao, et al.
Publicado: (2023)