Cargando…
Privacy-protecting, reliable response data discovery using COVID-19 patient observations
OBJECTIVE: To utilize, in an individual and institutional privacy-preserving manner, electronic health record (EHR) data from 202 hospitals by analyzing answers to COVID-19-related questions and posting these answers online. MATERIALS AND METHODS: We developed a distributed, federated network of 12...
Autores principales: | Kim, Jihoon, Neumann, Larissa, Paul, Paulina, Day, Michele E, Aratow, Michael, Bell, Douglas S, Doctor, Jason N, Hinske, Ludwig C, Jiang, Xiaoqian, Kim, Katherine K, Matheny, Michael E, Meeker, Daniella, Pletcher, Mark J, Schilling, Lisa M, SooHoo, Spencer, Xu, Hua, Zheng, Kai, Ohno-Machado, Lucila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8194878/ https://www.ncbi.nlm.nih.gov/pubmed/34051088 http://dx.doi.org/10.1093/jamia/ocab054 |
Ejemplares similares
-
Privacy-Protecting, Reliable Response Data Discovery Using COVID-19 Patient Observations
por: Kim, Jihoon, et al.
Publicado: (2020) -
A system to build distributed multivariate models and manage disparate data sharing policies: implementation in the scalable national network for effectiveness research
por: Meeker, Daniella, et al.
Publicado: (2015) -
Calibrating predictive model estimates to support personalized medicine
por: Jiang, Xiaoqian, et al.
Publicado: (2011) -
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data
por: Wu, Yuan, et al.
Publicado: (2012) -
A patient-driven adaptive prediction technique to improve personalized risk estimation for clinical decision support
por: Jiang, Xiaoqian, et al.
Publicado: (2012)