Cargando…
Radiomic Analysis of Contrast-Enhanced Mammography With Different Image Types: Classification of Breast Lesions
Objective: A limited number of studies have focused on the radiomic analysis of contrast-enhanced mammography (CEM). We aimed to construct several radiomics-based models of CEM for classifying benign and malignant breast lesions. Materials and Methods: The retrospective, double-center study included...
Autores principales: | Wang, Simin, Mao, Ning, Duan, Shaofeng, Li, Qin, Li, Ruimin, Jiang, Tingting, Wang, Zhongyi, Xie, Haizhu, Gu, Yajia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195270/ https://www.ncbi.nlm.nih.gov/pubmed/34123776 http://dx.doi.org/10.3389/fonc.2021.600546 |
Ejemplares similares
-
Identifying factors that may influence the classification performance of radiomics models using contrast-enhanced mammography (CEM) images
por: Sun, Yuqi, et al.
Publicado: (2022) -
Contrast-Enhanced Spectral Mammography-Based Radiomics Nomogram for the Prediction of Neoadjuvant Chemotherapy-Insensitive Breast Cancers
por: Wang, Zhongyi, et al.
Publicado: (2021) -
Contrast-Enhanced Spectral Mammography-Based Radiomics Nomogram for Identifying Benign and Malignant Breast Lesions of Sub-1 cm
por: Lin, Fan, et al.
Publicado: (2020) -
Deep learning-enabled fully automated pipeline system for segmentation and classification of single-mass breast lesions using contrast-enhanced mammography: a prospective, multicentre study
por: Zheng, Tiantian, et al.
Publicado: (2023) -
Radiomics Nomogram of DCE-MRI for the Prediction of Axillary Lymph Node Metastasis in Breast Cancer
por: Mao, Ning, et al.
Publicado: (2020)