Cargando…
Automatic classification of medical image modality and anatomical location using convolutional neural network
Modern radiologic images comply with DICOM (digital imaging and communications in medicine) standard, which, upon conversion to other image format, would lose its image detail and information such as patient demographics or type of image modality that DICOM format carries. As there is a growing inte...
Autores principales: | Chiang, Chen-Hua, Weng, Chi-Lun, Chiu, Hung-Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195382/ https://www.ncbi.nlm.nih.gov/pubmed/34115822 http://dx.doi.org/10.1371/journal.pone.0253205 |
Ejemplares similares
-
Automatic detection and vascular territory classification of hyperacute staged ischemic stroke on diffusion weighted image using convolutional neural networks
por: Lee, Kun-Yu, et al.
Publicado: (2023) -
Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
por: Takiyama, Hirotoshi, et al.
Publicado: (2018) -
Automatic anatomical classification of colonoscopic images using deep convolutional neural networks
por: Saito, Hiroaki, et al.
Publicado: (2020) -
Neuroimaging modality fusion in Alzheimer’s classification using convolutional neural networks
por: Punjabi, Arjun, et al.
Publicado: (2019) -
Optimization of convolutional neural network hyperparameters for automatic classification of adult mosquitoes
por: Motta, Daniel, et al.
Publicado: (2020)