Cargando…
Structural connectivity differs between males and females in the brain object manipulation network
Object control skills are one of the most important abilities in daily life. Knowledge of object manipulation is an essential factor in improving object control skills. Although males and females equally try to use object manipulation knowledge, their object control abilities often differ. To explai...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195422/ https://www.ncbi.nlm.nih.gov/pubmed/34115811 http://dx.doi.org/10.1371/journal.pone.0253273 |
Sumario: | Object control skills are one of the most important abilities in daily life. Knowledge of object manipulation is an essential factor in improving object control skills. Although males and females equally try to use object manipulation knowledge, their object control abilities often differ. To explain this difference, we investigated how structural brain networks in males and females are differentially organized in the tool-preferring areas of the object manipulation network. The structural connectivity between the primary motor and premotor regions and between the inferior parietal regions in males was significantly higher than that in females. However, females showed greater structural connectivity in various regions of the object manipulation network, including the paracentral lobule, inferior parietal regions, superior parietal cortices, MT+ complex and neighboring visual areas, and dorsal stream visual cortex. The global node strength found in the female parietal network was significantly higher than that in males but not for the entire object manipulation, ventral temporal, and motor networks. These findings indicated that the parietal network in females has greater inter-regional structural connectivity to retrieve manipulation knowledge than that in males. This study suggests that differential structural networks in males and females might influence object manipulation knowledge retrieval. |
---|