Cargando…
Gravitational scaling analysis on spatial diffusion of COVID-19 in Hubei Province, China
The spatial diffusion of epidemic disease follows distance decay law in geography and social physics, but the mathematical models of distance decay depend on concrete spatio-temporal conditions. This paper is devoted to modeling spatial diffusion patterns of COVID-19 stemming from Wuhan city to Hube...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195435/ https://www.ncbi.nlm.nih.gov/pubmed/34115791 http://dx.doi.org/10.1371/journal.pone.0252889 |
_version_ | 1783706502995902464 |
---|---|
author | Chen, Yanguang Li, Yajing Feng, Shuo Man, Xiaoming Long, Yuqing |
author_facet | Chen, Yanguang Li, Yajing Feng, Shuo Man, Xiaoming Long, Yuqing |
author_sort | Chen, Yanguang |
collection | PubMed |
description | The spatial diffusion of epidemic disease follows distance decay law in geography and social physics, but the mathematical models of distance decay depend on concrete spatio-temporal conditions. This paper is devoted to modeling spatial diffusion patterns of COVID-19 stemming from Wuhan city to Hubei province, China. The modeling approach is to integrate analytical method and experimental method. The local gravity model is derived from allometric scaling and global gravity model, and then the parameters of the local gravity model are estimated by observational data and least squares calculation. The main results are as below. The local gravity model based on power law decay can effectively describe the diffusion patterns and process of COVID-19 in Hubei Province, and the goodness of fit of the gravity model based on negative exponential decay to the observational data is not satisfactory. Further, the goodness of fit of the model to data entirely became better and better over time, the size elasticity coefficient increases first and then decreases, and the distance attenuation exponent decreases first and then increases. Moreover, the significance of spatial autoregressive coefficient in the model is low, and the confidence level is less than 80%. The conclusions can be reached as follows. (1) The spatial diffusion of COVID-19 of Hubei bears long range effect, and the size of a city and the distance of the city to Wuhan affect the total number of confirmed cases. (2) Wuhan direct transmission is the main process in the spatial diffusion of COVID-19 in Hubei at the early stage, and the horizontal transmission between regions is not significant. (3) The effect of spatial lockdown and isolation measures taken by Chinese government against the transmission of COVID-19 is obvious. This study suggests that the role of urban gravity (size and distance) should be taken into account to prevent and control epidemic disease. |
format | Online Article Text |
id | pubmed-8195435 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-81954352021-06-21 Gravitational scaling analysis on spatial diffusion of COVID-19 in Hubei Province, China Chen, Yanguang Li, Yajing Feng, Shuo Man, Xiaoming Long, Yuqing PLoS One Research Article The spatial diffusion of epidemic disease follows distance decay law in geography and social physics, but the mathematical models of distance decay depend on concrete spatio-temporal conditions. This paper is devoted to modeling spatial diffusion patterns of COVID-19 stemming from Wuhan city to Hubei province, China. The modeling approach is to integrate analytical method and experimental method. The local gravity model is derived from allometric scaling and global gravity model, and then the parameters of the local gravity model are estimated by observational data and least squares calculation. The main results are as below. The local gravity model based on power law decay can effectively describe the diffusion patterns and process of COVID-19 in Hubei Province, and the goodness of fit of the gravity model based on negative exponential decay to the observational data is not satisfactory. Further, the goodness of fit of the model to data entirely became better and better over time, the size elasticity coefficient increases first and then decreases, and the distance attenuation exponent decreases first and then increases. Moreover, the significance of spatial autoregressive coefficient in the model is low, and the confidence level is less than 80%. The conclusions can be reached as follows. (1) The spatial diffusion of COVID-19 of Hubei bears long range effect, and the size of a city and the distance of the city to Wuhan affect the total number of confirmed cases. (2) Wuhan direct transmission is the main process in the spatial diffusion of COVID-19 in Hubei at the early stage, and the horizontal transmission between regions is not significant. (3) The effect of spatial lockdown and isolation measures taken by Chinese government against the transmission of COVID-19 is obvious. This study suggests that the role of urban gravity (size and distance) should be taken into account to prevent and control epidemic disease. Public Library of Science 2021-06-11 /pmc/articles/PMC8195435/ /pubmed/34115791 http://dx.doi.org/10.1371/journal.pone.0252889 Text en © 2021 Chen et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Chen, Yanguang Li, Yajing Feng, Shuo Man, Xiaoming Long, Yuqing Gravitational scaling analysis on spatial diffusion of COVID-19 in Hubei Province, China |
title | Gravitational scaling analysis on spatial diffusion of COVID-19 in Hubei Province, China |
title_full | Gravitational scaling analysis on spatial diffusion of COVID-19 in Hubei Province, China |
title_fullStr | Gravitational scaling analysis on spatial diffusion of COVID-19 in Hubei Province, China |
title_full_unstemmed | Gravitational scaling analysis on spatial diffusion of COVID-19 in Hubei Province, China |
title_short | Gravitational scaling analysis on spatial diffusion of COVID-19 in Hubei Province, China |
title_sort | gravitational scaling analysis on spatial diffusion of covid-19 in hubei province, china |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195435/ https://www.ncbi.nlm.nih.gov/pubmed/34115791 http://dx.doi.org/10.1371/journal.pone.0252889 |
work_keys_str_mv | AT chenyanguang gravitationalscalinganalysisonspatialdiffusionofcovid19inhubeiprovincechina AT liyajing gravitationalscalinganalysisonspatialdiffusionofcovid19inhubeiprovincechina AT fengshuo gravitationalscalinganalysisonspatialdiffusionofcovid19inhubeiprovincechina AT manxiaoming gravitationalscalinganalysisonspatialdiffusionofcovid19inhubeiprovincechina AT longyuqing gravitationalscalinganalysisonspatialdiffusionofcovid19inhubeiprovincechina |