Cargando…
Combining generative artificial intelligence and on-chip synthesis for de novo drug design
Automating the molecular design-make-test-analyze cycle accelerates hit and lead finding for drug discovery. Using deep learning for molecular design and a microfluidics platform for on-chip chemical synthesis, liver X receptor (LXR) agonists were generated from scratch. The computational pipeline w...
Autores principales: | Grisoni, Francesca, Huisman, Berend J. H., Button, Alexander L., Moret, Michael, Atz, Kenneth, Merk, Daniel, Schneider, Gisbert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195470/ https://www.ncbi.nlm.nih.gov/pubmed/34117066 http://dx.doi.org/10.1126/sciadv.abg3338 |
Ejemplares similares
-
De Novo Design of Bioactive Small Molecules by Artificial Intelligence
por: Merk, Daniel, et al.
Publicado: (2018) -
Leveraging molecular structure and bioactivity with chemical language models for de novo drug design
por: Moret, Michael, et al.
Publicado: (2023) -
Beam Search for Automated Design and Scoring of Novel ROR Ligands with Machine Intelligence
por: Moret, Michael, et al.
Publicado: (2021) -
Generative Recurrent Networks for De Novo Drug Design
por: Gupta, Anvita, et al.
Publicado: (2017) -
Perplexity-Based Molecule Ranking and Bias Estimation
of Chemical Language Models
por: Moret, Michael, et al.
Publicado: (2022)