Cargando…

Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat

The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic and phenotypic information from 12,858 wheat genotypes representing 6575 sing...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yusheng, Thorwarth, Patrick, Jiang, Yong, Philipp, Norman, Schulthess, Albert W., Gils, Mario, Boeven, Philipp H. G., Longin, C. Friedrich H., Schacht, Johannes, Ebmeyer, Erhard, Korzun, Viktor, Mirdita, Vilson, Dörnte, Jost, Avenhaus, Ulrike, Horbach, Ralf, Cöster, Hilmar, Holzapfel, Josef, Ramgraber, Ludwig, Kühnle, Simon, Varenne, Pierrick, Starke, Anne, Schürmann, Friederike, Beier, Sebastian, Scholz, Uwe, Liu, Fang, Schmidt, Renate H., Reif, Jochen C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195483/
https://www.ncbi.nlm.nih.gov/pubmed/34117061
http://dx.doi.org/10.1126/sciadv.abf9106
_version_ 1783706511615197184
author Zhao, Yusheng
Thorwarth, Patrick
Jiang, Yong
Philipp, Norman
Schulthess, Albert W.
Gils, Mario
Boeven, Philipp H. G.
Longin, C. Friedrich H.
Schacht, Johannes
Ebmeyer, Erhard
Korzun, Viktor
Mirdita, Vilson
Dörnte, Jost
Avenhaus, Ulrike
Horbach, Ralf
Cöster, Hilmar
Holzapfel, Josef
Ramgraber, Ludwig
Kühnle, Simon
Varenne, Pierrick
Starke, Anne
Schürmann, Friederike
Beier, Sebastian
Scholz, Uwe
Liu, Fang
Schmidt, Renate H.
Reif, Jochen C.
author_facet Zhao, Yusheng
Thorwarth, Patrick
Jiang, Yong
Philipp, Norman
Schulthess, Albert W.
Gils, Mario
Boeven, Philipp H. G.
Longin, C. Friedrich H.
Schacht, Johannes
Ebmeyer, Erhard
Korzun, Viktor
Mirdita, Vilson
Dörnte, Jost
Avenhaus, Ulrike
Horbach, Ralf
Cöster, Hilmar
Holzapfel, Josef
Ramgraber, Ludwig
Kühnle, Simon
Varenne, Pierrick
Starke, Anne
Schürmann, Friederike
Beier, Sebastian
Scholz, Uwe
Liu, Fang
Schmidt, Renate H.
Reif, Jochen C.
author_sort Zhao, Yusheng
collection PubMed
description The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic and phenotypic information from 12,858 wheat genotypes representing 6575 single-cross hybrids and 6283 inbred lines that were evaluated in six experimental series for yield in field trials encompassing ~125,000 plots. Integrating data resulted in twofold higher prediction ability compared with cases in which hybrid performance was predicted across individual experimental series. Our results suggest that combining data across breeding programs is a particularly appropriate strategy to exploit the potential of big data for predictive plant breeding. This paradigm shift can contribute to increasing yield and resilience, which is needed to feed the growing world population.
format Online
Article
Text
id pubmed-8195483
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-81954832021-06-24 Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat Zhao, Yusheng Thorwarth, Patrick Jiang, Yong Philipp, Norman Schulthess, Albert W. Gils, Mario Boeven, Philipp H. G. Longin, C. Friedrich H. Schacht, Johannes Ebmeyer, Erhard Korzun, Viktor Mirdita, Vilson Dörnte, Jost Avenhaus, Ulrike Horbach, Ralf Cöster, Hilmar Holzapfel, Josef Ramgraber, Ludwig Kühnle, Simon Varenne, Pierrick Starke, Anne Schürmann, Friederike Beier, Sebastian Scholz, Uwe Liu, Fang Schmidt, Renate H. Reif, Jochen C. Sci Adv Research Articles The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic and phenotypic information from 12,858 wheat genotypes representing 6575 single-cross hybrids and 6283 inbred lines that were evaluated in six experimental series for yield in field trials encompassing ~125,000 plots. Integrating data resulted in twofold higher prediction ability compared with cases in which hybrid performance was predicted across individual experimental series. Our results suggest that combining data across breeding programs is a particularly appropriate strategy to exploit the potential of big data for predictive plant breeding. This paradigm shift can contribute to increasing yield and resilience, which is needed to feed the growing world population. American Association for the Advancement of Science 2021-06-11 /pmc/articles/PMC8195483/ /pubmed/34117061 http://dx.doi.org/10.1126/sciadv.abf9106 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Zhao, Yusheng
Thorwarth, Patrick
Jiang, Yong
Philipp, Norman
Schulthess, Albert W.
Gils, Mario
Boeven, Philipp H. G.
Longin, C. Friedrich H.
Schacht, Johannes
Ebmeyer, Erhard
Korzun, Viktor
Mirdita, Vilson
Dörnte, Jost
Avenhaus, Ulrike
Horbach, Ralf
Cöster, Hilmar
Holzapfel, Josef
Ramgraber, Ludwig
Kühnle, Simon
Varenne, Pierrick
Starke, Anne
Schürmann, Friederike
Beier, Sebastian
Scholz, Uwe
Liu, Fang
Schmidt, Renate H.
Reif, Jochen C.
Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat
title Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat
title_full Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat
title_fullStr Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat
title_full_unstemmed Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat
title_short Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat
title_sort unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195483/
https://www.ncbi.nlm.nih.gov/pubmed/34117061
http://dx.doi.org/10.1126/sciadv.abf9106
work_keys_str_mv AT zhaoyusheng unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT thorwarthpatrick unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT jiangyong unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT philippnorman unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT schulthessalbertw unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT gilsmario unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT boevenphilipphg unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT longincfriedrichh unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT schachtjohannes unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT ebmeyererhard unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT korzunviktor unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT mirditavilson unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT dorntejost unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT avenhausulrike unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT horbachralf unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT costerhilmar unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT holzapfeljosef unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT ramgraberludwig unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT kuhnlesimon unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT varennepierrick unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT starkeanne unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT schurmannfriederike unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT beiersebastian unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT scholzuwe unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT liufang unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT schmidtrenateh unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat
AT reifjochenc unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat