Cargando…
Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat
The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic and phenotypic information from 12,858 wheat genotypes representing 6575 sing...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195483/ https://www.ncbi.nlm.nih.gov/pubmed/34117061 http://dx.doi.org/10.1126/sciadv.abf9106 |
_version_ | 1783706511615197184 |
---|---|
author | Zhao, Yusheng Thorwarth, Patrick Jiang, Yong Philipp, Norman Schulthess, Albert W. Gils, Mario Boeven, Philipp H. G. Longin, C. Friedrich H. Schacht, Johannes Ebmeyer, Erhard Korzun, Viktor Mirdita, Vilson Dörnte, Jost Avenhaus, Ulrike Horbach, Ralf Cöster, Hilmar Holzapfel, Josef Ramgraber, Ludwig Kühnle, Simon Varenne, Pierrick Starke, Anne Schürmann, Friederike Beier, Sebastian Scholz, Uwe Liu, Fang Schmidt, Renate H. Reif, Jochen C. |
author_facet | Zhao, Yusheng Thorwarth, Patrick Jiang, Yong Philipp, Norman Schulthess, Albert W. Gils, Mario Boeven, Philipp H. G. Longin, C. Friedrich H. Schacht, Johannes Ebmeyer, Erhard Korzun, Viktor Mirdita, Vilson Dörnte, Jost Avenhaus, Ulrike Horbach, Ralf Cöster, Hilmar Holzapfel, Josef Ramgraber, Ludwig Kühnle, Simon Varenne, Pierrick Starke, Anne Schürmann, Friederike Beier, Sebastian Scholz, Uwe Liu, Fang Schmidt, Renate H. Reif, Jochen C. |
author_sort | Zhao, Yusheng |
collection | PubMed |
description | The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic and phenotypic information from 12,858 wheat genotypes representing 6575 single-cross hybrids and 6283 inbred lines that were evaluated in six experimental series for yield in field trials encompassing ~125,000 plots. Integrating data resulted in twofold higher prediction ability compared with cases in which hybrid performance was predicted across individual experimental series. Our results suggest that combining data across breeding programs is a particularly appropriate strategy to exploit the potential of big data for predictive plant breeding. This paradigm shift can contribute to increasing yield and resilience, which is needed to feed the growing world population. |
format | Online Article Text |
id | pubmed-8195483 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-81954832021-06-24 Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat Zhao, Yusheng Thorwarth, Patrick Jiang, Yong Philipp, Norman Schulthess, Albert W. Gils, Mario Boeven, Philipp H. G. Longin, C. Friedrich H. Schacht, Johannes Ebmeyer, Erhard Korzun, Viktor Mirdita, Vilson Dörnte, Jost Avenhaus, Ulrike Horbach, Ralf Cöster, Hilmar Holzapfel, Josef Ramgraber, Ludwig Kühnle, Simon Varenne, Pierrick Starke, Anne Schürmann, Friederike Beier, Sebastian Scholz, Uwe Liu, Fang Schmidt, Renate H. Reif, Jochen C. Sci Adv Research Articles The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic and phenotypic information from 12,858 wheat genotypes representing 6575 single-cross hybrids and 6283 inbred lines that were evaluated in six experimental series for yield in field trials encompassing ~125,000 plots. Integrating data resulted in twofold higher prediction ability compared with cases in which hybrid performance was predicted across individual experimental series. Our results suggest that combining data across breeding programs is a particularly appropriate strategy to exploit the potential of big data for predictive plant breeding. This paradigm shift can contribute to increasing yield and resilience, which is needed to feed the growing world population. American Association for the Advancement of Science 2021-06-11 /pmc/articles/PMC8195483/ /pubmed/34117061 http://dx.doi.org/10.1126/sciadv.abf9106 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Zhao, Yusheng Thorwarth, Patrick Jiang, Yong Philipp, Norman Schulthess, Albert W. Gils, Mario Boeven, Philipp H. G. Longin, C. Friedrich H. Schacht, Johannes Ebmeyer, Erhard Korzun, Viktor Mirdita, Vilson Dörnte, Jost Avenhaus, Ulrike Horbach, Ralf Cöster, Hilmar Holzapfel, Josef Ramgraber, Ludwig Kühnle, Simon Varenne, Pierrick Starke, Anne Schürmann, Friederike Beier, Sebastian Scholz, Uwe Liu, Fang Schmidt, Renate H. Reif, Jochen C. Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat |
title | Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat |
title_full | Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat |
title_fullStr | Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat |
title_full_unstemmed | Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat |
title_short | Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat |
title_sort | unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195483/ https://www.ncbi.nlm.nih.gov/pubmed/34117061 http://dx.doi.org/10.1126/sciadv.abf9106 |
work_keys_str_mv | AT zhaoyusheng unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT thorwarthpatrick unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT jiangyong unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT philippnorman unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT schulthessalbertw unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT gilsmario unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT boevenphilipphg unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT longincfriedrichh unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT schachtjohannes unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT ebmeyererhard unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT korzunviktor unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT mirditavilson unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT dorntejost unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT avenhausulrike unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT horbachralf unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT costerhilmar unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT holzapfeljosef unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT ramgraberludwig unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT kuhnlesimon unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT varennepierrick unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT starkeanne unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT schurmannfriederike unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT beiersebastian unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT scholzuwe unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT liufang unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT schmidtrenateh unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat AT reifjochenc unlockingbigdatadoubledtheaccuracyinpredictingthegrainyieldinhybridwheat |