Cargando…
Handcrafted and Deep Learning-Based Radiomic Models Can Distinguish GBM from Brain Metastasis
OBJECTIVE: The purpose of this study was to investigate the feasibility of applying handcrafted radiomics (HCR) and deep learning-based radiomics (DLR) for the accurate preoperative classification of glioblastoma (GBM) and solitary brain metastasis (BM). METHODS: A retrospective analysis of the magn...
Autores principales: | Liu, Zhiyuan, Jiang, Zekun, Meng, Li, Yang, Jun, Liu, Ying, Zhang, Yingying, Peng, Haiqin, Li, Jiahui, Xiao, Gang, Zhang, Zijian, Zhou, Rongrong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195660/ https://www.ncbi.nlm.nih.gov/pubmed/34188680 http://dx.doi.org/10.1155/2021/5518717 |
Ejemplares similares
-
Predicting Adverse Radiation Effects in Brain Tumors After Stereotactic Radiotherapy With Deep Learning and Handcrafted Radiomics
por: Keek, Simon A., et al.
Publicado: (2022) -
Deep Learning and Handcrafted Features for Virus Image Classification
por: Nanni, Loris, et al.
Publicado: (2020) -
On the Efficacy of Handcrafted and Deep Features for Seed Image Classification
por: Loddo, Andrea, et al.
Publicado: (2021) -
CT Reconstruction Kernels and the Effect of Pre- and Post-Processing on the Reproducibility of Handcrafted Radiomic Features
por: Refaee, Turkey, et al.
Publicado: (2022) -
Evaluation of human epidermal growth factor receptor 2 status of breast cancer using preoperative multidetector computed tomography with deep learning and handcrafted radiomics features
por: Yang, Xiaojun, et al.
Publicado: (2020)